test_row_conv_op.py 3.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
Siddharth Goyal 已提交
15 16 17 18 19 20 21
import unittest
import numpy as np
from op_test import OpTest


def row_conv_forward(x, lod, wt):
    out = np.zeros_like(x)
22 23 24 25
    num_sequences = len(lod[0])
    seq_info = [0]
    for seq_len in lod[0]:
        seq_info.append(seq_info[-1] + seq_len)
S
Siddharth Goyal 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
    context_length = wt.shape[0]

    for i in range(num_sequences):  # loop over number of sequences
        start = seq_info[i]
        end = seq_info[i + 1]
        curinput = x[start:end, :]
        curoutput = out[start:end, :]

        cur_timesteps = end - start
        for j in range(cur_timesteps):  # loop over different timesteps
            for k in range(context_length):
                if j + k >= cur_timesteps:
                    continue
                curoutput[j, :] += curinput[j + k, :] * wt[k, :]

    return out


class TestRowConvOp1(OpTest):
    def setUp(self):

        self.op_type = "row_conv"
48 49
        lod = [[2, 3, 2]]
        T = sum(lod[0])
S
Siddharth Goyal 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
        D = 16
        context_length = 2

        x = np.random.random((T, D)).astype("float32")
        wt = np.random.random((context_length, D)).astype("float32")
        self.inputs = {'X': (x, lod), 'Filter': wt}

        out = row_conv_forward(x, lod, wt)
        self.outputs = {'Out': (out, lod)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Filter'], 'Out', max_relative_error=0.05)

    def test_check_grad_ignore_x(self):
        self.check_grad(
            ['Filter'], 'Out', max_relative_error=0.05, no_grad_set=set('X'))

    def test_check_grad_ignore_wt(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Filter'))


class TestRowConvOp2(OpTest):
    def setUp(self):

        self.op_type = "row_conv"
79 80
        lod = [[20, 30, 50]]
        T = sum(lod[0])
S
Siddharth Goyal 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        D = 35
        context_length = 35

        x = np.random.random((T, D)).astype("float32")
        wt = np.random.random((context_length, D)).astype("float32")
        self.inputs = {'X': (x, lod), 'Filter': wt}

        out = row_conv_forward(x, lod, wt)
        self.outputs = {'Out': (out, lod)}

    def test_check_output(self):
        self.check_output()

    #max_relative_error is increased from 0.05 to 0.06 as for higher
    #dimensional input, the dX on CPU for some values has max_rel_error 
    #slightly more than 0.05
    def test_check_grad_normal(self):
        self.check_grad(['X', 'Filter'], 'Out', max_relative_error=0.06)

    def test_check_grad_ignore_x(self):
        self.check_grad(
            ['Filter'], 'Out', max_relative_error=0.06, no_grad_set=set('X'))

    def test_check_grad_ignore_wt(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.06, no_grad_set=set('Filter'))


if __name__ == '__main__':
    unittest.main()