gemm_conv_op.h 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hedaoyuan 已提交
17
#include "paddle/framework/eigen.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename Place, typename T>
class GemmConvKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    Tensor* filter = const_cast<Tensor*>(context.Input<Tensor>("Filter"));
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
H
hedaoyuan 已提交
38
    auto filter_dims = filter->dims();
39 40 41 42 43 44 45 46 47 48 49 50 51

    int batch_size = input->dims()[0];
    int input_channels = input->dims()[1];
    int filter_height = filter->dims()[filter->dims().size() - 2];
    int filter_width = filter->dims()[filter->dims().size() - 1];
    int output_height = output->dims()[2];
    int output_width = output->dims()[3];

    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        im2col;
    framework::DDim col_shape = {input_channels, filter_height, filter_width,
                                 output_height, output_width};
H
hedaoyuan 已提交
52
    Tensor col;
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    col.mutable_data<float>(col_shape, context.GetPlace());

    auto* device_context =
        const_cast<platform::DeviceContext*>(context.device_context_);

    framework::DDim input_shape = {input->dims()[1], input->dims()[2],
                                   input->dims()[3]};
    framework::DDim filter_matrix_shape = {
        filter->dims()[0],
        filter->dims()[1] * filter->dims()[2] * filter->dims()[3]};
    framework::DDim col_matrix_shape = {
        input_channels * filter_height * filter_width,
        output_height * output_width};
    framework::DDim output_matrix_shape = {
        output->dims()[1], output->dims()[2] * output->dims()[3]};
    filter->Resize(filter_matrix_shape);

H
hedaoyuan 已提交
70
    // convolution operator: im2col + gemm
71 72
    for (int i = 0; i < batch_size; i++) {
      // im2col
H
hedaoyuan 已提交
73
      Tensor in_slice = input->Slice<T>(i, i + 1);
74 75 76 77 78 79
      in_slice.Resize(input_shape);
      col.Resize(col_shape);
      im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
             device_context);

      // gemm
H
hedaoyuan 已提交
80
      Tensor out_slice = output->Slice<T>(i, i + 1);
81 82 83 84 85
      out_slice.Resize(output_matrix_shape);
      col.Resize(col_matrix_shape);
      math::matmul<Place, T>(*filter, false, col, false, T(1.0), &out_slice,
                             T(0.0), device_context);
    }
H
hedaoyuan 已提交
86
    filter->Resize(filter_dims);
87 88 89 90 91 92 93
  }
};

template <typename Place, typename T>
class GemmConvGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    const Tensor* input = context.Input<Tensor>("Input");
    Tensor* filter = const_cast<Tensor*>(context.Input<Tensor>("Filter"));
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));
    input_grad->mutable_data<T>(context.GetPlace());
    filter_grad->mutable_data<T>(context.GetPlace());

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    auto filter_dims = filter->dims();

    int batch_size = input->dims()[0];
    int input_channels = input->dims()[1];
    int filter_height = filter->dims()[filter->dims().size() - 2];
    int filter_width = filter->dims()[filter->dims().size() - 1];
    int output_height = output_grad->dims()[2];
    int output_width = output_grad->dims()[3];

    paddle::operators::math::Col2ImFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        col2im;
    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        im2col;
    Tensor col;
    framework::DDim col_shape = {input_channels, filter_height, filter_width,
                                 output_height, output_width};
    col.mutable_data<float>(col_shape, context.GetPlace());

    auto* device_context =
        const_cast<platform::DeviceContext*>(context.device_context_);

    framework::DDim input_shape = {input->dims()[1], input->dims()[2],
                                   input->dims()[3]};
    framework::DDim filter_matrix_shape = {
        filter->dims()[0],
        filter->dims()[1] * filter->dims()[2] * filter->dims()[3]};
    framework::DDim col_matrix_shape = {
        input_channels * filter_height * filter_width,
        output_height * output_width};
    framework::DDim output_matrix_shape = {
        output_grad->dims()[1],
        output_grad->dims()[2] * output_grad->dims()[3]};
    filter->Resize(filter_matrix_shape);
    filter_grad->Resize(filter_matrix_shape);

    auto t1 = framework::EigenVector<T>::Flatten(*filter_grad);
    t1.device(context.GetEigenDevice<Place>()) = t1.constant(static_cast<T>(0));
    auto t2 = framework::EigenVector<T>::Flatten(*input_grad);
    t2.device(context.GetEigenDevice<Place>()) = t2.constant(static_cast<T>(0));

    // convolution backward input operator:  gemm + col2im
    // convolution backward weight operator: im2col + gemm
    for (int i = 0; i < batch_size; i++) {
      // gemm
      Tensor out_slice = output_grad->Slice<T>(i, i + 1);
      out_slice.Resize(output_matrix_shape);
      col.Resize(col_matrix_shape);
      math::matmul<Place, T>(*filter, true, out_slice, false, T(1.0), &col,
                             T(0.0), device_context);

      // col2im
      Tensor in_grad_slice = input_grad->Slice<T>(i, i + 1);
      in_grad_slice.Resize(input_shape);
      col.Resize(col_shape);
      col2im(in_grad_slice, col, strides[0], strides[1], paddings[0],
             paddings[1], device_context);

      // im2col
      Tensor in_slice = input->Slice<T>(i, i + 1);
      in_slice.Resize(input_shape);
      col.Resize(col_shape);
      im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
             device_context);

      // gemm
      col.Resize(col_matrix_shape);
      math::matmul<Place, T>(out_slice, false, col, true, T(1.0), filter_grad,
                             T(1.0), device_context);
    }
    filter->Resize(filter_dims);
    filter_grad->Resize(filter_dims);
180 181 182 183 184
  }
};

}  // namespace operators
}  // namespace paddle