model.py 74.9 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import inspect
import os
import pickle
import numpy as np
import six
import warnings
25 26 27
import time
import socket
import contextlib
28 29
from collections import Iterable

30
import paddle
31
from paddle import fluid
32 33
from paddle.fluid import core
from paddle.fluid.framework import in_dygraph_mode, Variable, ParamBase, _current_expected_place
34 35
from paddle.fluid.framework import in_dygraph_mode, Variable
from paddle.fluid.framework import _current_expected_place as _get_device
36 37 38 39
from paddle.fluid.executor import global_scope
from paddle.fluid.io import is_belong_to_optimizer
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
40
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, FunctionSpec
41
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
42
from paddle.fluid.layers.utils import flatten
43
from paddle.fluid.layers import collective
44 45
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
from paddle.fluid.incubate.fleet.base import role_maker
46

47 48
from paddle.io import DataLoader, Dataset, DistributedBatchSampler
from paddle.fluid.executor import scope_guard, Executor
49
from paddle.fluid.dygraph.layers import Layer
50
from paddle.metric import Metric
51
from paddle.static import InputSpec as Input
52
import paddle.distributed as dist
53

L
LiuChiachi 已提交
54
from .callbacks import config_callbacks, EarlyStopping
L
LielinJiang 已提交
55
from .model_summary import summary
56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
__all__ = ['Model', ]

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
    assert isinstance(var, (Variable, fluid.core.VarBase)), "not a variable"
    if isinstance(var, fluid.core.VarBase):
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
    if hasattr(inspect, 'getfullargspec'):
        return inspect.getfullargspec(func)[0]
    else:
        return inspect.getargspec(func)[0]


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
    return collective._c_allgather(
        x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream)


def wait_server_ready(endpoints):
    assert not isinstance(endpoints, six.string_types)
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
                    socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


def init_communicator(program, rank, nranks, wait_port, current_endpoint,
                      endpoints):
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
    block = program.global_block()
    nccl_id_var = block.create_var(
        name=fluid.unique_name.generate('nccl_id'),
        persistable=True,
        type=fluid.core.VarDesc.VarType.RAW)

    block.append_op(
        type='c_gen_nccl_id',
        inputs={},
        outputs={'Out': nccl_id_var},
        attrs={
            'rank': rank,
            'endpoint': current_endpoint,
            'other_endpoints': other_endpoints
        })

    block.append_op(
        type='c_comm_init',
        inputs={'X': nccl_id_var},
        outputs={},
        attrs={
            'nranks': nranks,
            'rank': rank,
            'ring_id': 0,
        })


def prepare_distributed_context(place=None):
    if place is None:
        place = fluid.CUDAPlace(ParallelEnv().dev_id) if ParallelEnv().nranks > 1 \
            else fluid.CUDAPlace(0)

    strategy = fluid.dygraph.parallel.ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
            init_communicator(communicator_prog, strategy.local_rank,
                              strategy.nranks, True, strategy.current_endpoint,
                              strategy.trainer_endpoints)
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

        if fluid.in_dygraph_mode():
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)
        else:
            _init_context()

    else:
        assert ("Only support CUDAPlace for now.")

    _parallel_context_initialized = True
    return strategy
203 204


L
LiuChiachi 已提交
205
def _update_input_info(inputs):
L
LiuChiachi 已提交
206
    "Get input shape list by given inputs in Model initialization."
207
    shapes = None
L
LiuChiachi 已提交
208
    dtypes = None
L
LiuChiachi 已提交
209 210
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
211
        dtypes = [inputs.dtype]
L
LiuChiachi 已提交
212
    elif isinstance(inputs, list):
213
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
214
        dtypes = [input.dtype for input in inputs]
215 216
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
217 218 219 220
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
221 222


223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
class StaticGraphAdapter(object):
    """
    Model traning/inference with a static graph.
    """

    def __init__(self, model):
        super(StaticGraphAdapter, self).__init__()
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    def train_batch(self, inputs, labels=None):
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
        self.mode = 'train'
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

272
    def predict_batch(self, inputs):
273 274 275 276
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
277
        return self.model.network.parameters(*args, **kwargs)
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

    def save(self, path):
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
296
        _save(self.model.network.state_dict(), param_path)
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
            p.name: p
            for p in filter(is_belong_to_optimizer, prog.list_vars())
        }
        if not optim:
            return

        _save(optim, optim_path)

    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
            [param for param, state in param_state_pairs],
            global_scope(), executor)
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
                    np.array(converted_state.pop("global_step")) - 1
                ) if "global_step" in converted_state else converted_state.pop(
                    "@LR_DECAY_COUNTER@", None)
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
                        accum_name = name if opt_name is None else name[len(
                            opt_name) + 1:]
                        for param_name, state_var in self.model._optimizer._accumulators[
                                name].items():
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
                                for state_key in sorted(
                                        state.keys(),
                                        key=lambda x: len(x),
                                        reverse=True):
                                    prefix = param_name + "_" + (
                                        opt_cls_name
                                        if opt_name is None else opt_name) + "_"
                                    if state_key.startswith(prefix):
                                        prefix_offset = state_key[len(
                                            prefix):].find("_") + len(prefix)
                                        opt_unq_name = state_key[len(
                                            param_name + "_"):prefix_offset]
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
                            dy_state_name = (param_name + "_" + opt_unq_name +
                                             "_" + accum_name + "_0")
                            converted_state[
                                state_var.name] = converted_state.pop(
                                    dy_state_name)

            assert var.name in converted_state, \
                "variable [{}] is not in optimizer state file".format(var.name)
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
        assert compiled_prog, \
            "Model is not ready, please call `model.prepare()` first"

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
        assert len(inputs) == len(self._input_vars[self.mode]), \
            "number of inputs" \
            + " does not match number of arguments of `forward` method"

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

        rets = self._executor.run(compiled_prog,
                                  feed=feed,
                                  fetch_list=pruned_fetch_list,
                                  return_numpy=False)

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
468

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
            if self.mode != 'train' and self.model._test_dataloader is not None \
                    and isinstance(self.model._test_dataloader, DataLoader) \
                    and self._nranks > 1:
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
                        s[:int(total_size - current_count), ...] for s in state
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
492 493 494 495 496

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
        if mode == 'train' and self.model._optimizer \
                and self.model._optimizer._learning_rate_map:
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
528 529
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
530 531
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
532
            self._label_vars[mode] = labels
533
            outputs = to_list(self.model.network.forward(*inputs))
534

535 536
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
537 538 539 540 541 542 543 544

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
545
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

            if mode == 'train' and self.model._optimizer:
                self._loss_endpoint = fluid.layers.sum(losses)
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
                    dist_strategy = DistributedStrategy()
                    dist_strategy.mode = "collective"
                    dist_strategy.collective_mode = "grad_allreduce"
                    self.model._optimizer = fleet.distributed_optimizer(
                        self.model._optimizer, strategy=dist_strategy)

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
568
            "loss": to_list(losses),
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
            "metric": metrics
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

        assert self.model._place is not None, \
            "device is not set, please call `model.prepare()` first"

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
                if not var_py.name.startswith('nccl_id') and var and \
                        var.get_tensor()._is_initialized():
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


class DynamicGraphAdapter(object):
    def __init__(self, model):
        super(DynamicGraphAdapter, self).__init__()
        self.model = model
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

L
LiuChiachi 已提交
621
        self._input_info = None
622 623 624 625 626 627
        if self._nranks > 1:
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
            stradegy.nranks = ParallelEnv().nranks
            stradegy.local_rank = ParallelEnv().local_rank
            stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints
            stradegy.current_endpoint = ParallelEnv().current_endpoint
628 629
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
                self.model.network, stradegy)
630 631 632 633 634 635 636 637 638 639 640 641 642

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
    def train_batch(self, inputs, labels=None):
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
643
        self.model.network.train()
644 645
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
646
        self._input_info = _update_input_info(inputs)
647 648 649
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

650 651 652
        if self._nranks > 1:
            outputs = self.ddp_model.forward(* [to_variable(x) for x in inputs])
        else:
653 654
            outputs = self.model.network.forward(
                * [to_variable(x) for x in inputs])
655 656 657 658 659

        losses = self.model._loss(*(to_list(outputs) + labels))
        losses = to_list(losses)
        final_loss = fluid.layers.sum(losses)
        final_loss.backward()
660 661

        self.model._optimizer.minimize(final_loss)
662
        self.model.network.clear_gradients()
663

664 665
        metrics = []
        for metric in self.model._metrics:
666
            metric_outs = metric.compute(*(to_list(outputs) + labels))
667 668 669 670 671 672 673
            m = metric.update(* [to_numpy(m) for m in to_list(metric_outs)])
            metrics.append(m)

        return ([to_numpy(l) for l in losses], metrics) \
            if len(metrics) > 0 else [to_numpy(l) for l in losses]

    def eval_batch(self, inputs, labels=None):
674
        self.model.network.eval()
675 676
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
677
        self._input_info = _update_input_info(inputs)
678 679 680
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

681
        outputs = self.model.network.forward(* [to_variable(x) for x in inputs])
682 683
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
684 685
            losses = to_list(losses)

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
            if self.model._test_dataloader is not None and self._nranks > 1 \
                    and isinstance(self.model._test_dataloader, DataLoader):
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
                        o[:int(total_size - current_count)] for o in outputs
                    ]
                    labels = [
                        l[:int(total_size - current_count)] for l in labels
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

711
            metric_outs = metric.compute(*(to_list(outputs) + labels))
712 713 714
            m = metric.update(* [to_numpy(m) for m in to_list(metric_outs)])
            metrics.append(m)

715
        if self.model._loss and len(metrics):
716
            return [to_numpy(l) for l in losses], metrics
717
        elif self.model._loss:
718 719 720
            return [to_numpy(l) for l in losses]
        else:
            return metrics
721

722
    def predict_batch(self, inputs):
723
        self.model.network.eval()
724 725
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
726
        self._input_info = _update_input_info(inputs)
727
        outputs = self.model.network.forward(*inputs)
728 729 730 731 732 733
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
734
        return self.model.network.parameters(*args, **kwargs)
735 736

    def save(self, path):
737
        params = self.model.network.state_dict()
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
        fluid.save_dygraph(params, path)
        if self.model._optimizer is None:
            return
        if self.model._optimizer.state_dict():
            optim = self.model._optimizer.state_dict()
            fluid.save_dygraph(optim, path)

    def load(self, param_state_pairs, optim_state):
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

754 755
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
756 757 758 759 760 761 762 763 764 765 766
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
        opt_name = opt_unq_name[:opt_unq_name.rfind("_")]  # remove suffix idx
767
        param_names = [param.name for param in self.model.network.parameters()]
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
        for var_name, state_var in sorted(
                optim_state.items(), key=lambda x: len(x[0]), reverse=True):
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
                    converted_state["global_step"] = np.array(
                        converted_state.pop("@LR_DECAY_COUNTER@")) + 1
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
                        accum_name = var_name[len(param_name + "_" + opt_name +
                                                  "_"):]
                    elif var_name.startswith(param_name +
                                             "_") and opt_name == opt_cls_name:
                        # when init optimizer without name
                        accum_name = var_name[len(param_name + "_"):]
                    else:
                        continue
                    # remove suffix idx
                    accum_name = accum_name[:accum_name.rfind("_")]
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
                    dy_state_name = (param_name + "_" + opt_unq_name + "_" +
                                     accum_name + "_0")
                    converted_state[dy_state_name] = state_var

799 800
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
801
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
802 803 804 805
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
806 807


808
class Model(object):
809 810 811
    """
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
812
    switched by `paddle.enable_static()`. The usage is as follows.
813
    But note, the switching between dynamic and static should be before
814
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
815
    must be required for static graph.
816

817
    Args:
818 819
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
820 821
        inputs (InputSpec|list|dict|None): `inputs`, entry points of network,
            could be a InputSpec instance, or lits of InputSpec instances,
822 823
            or dict ({name: InputSpec}), and it couldn't be None in static
            graph.
824 825 826
        labels (InputSpec|list|None): `labels`, entry points of network,
            could be a InputSpec instnace or lits of InputSpec instances,
            or None. For static graph, if labels is required in loss,
827 828 829
            labels must be set. Otherwise, it could be None.


830
    Examples:
831 832
        .. code-block:: python

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
          import paddle
          import paddle.nn as nn
          import paddle.vision.transforms as T
          from paddle.static import InputSpec
  
          device = paddle.set_device('cpu') # or 'gpu'
  
          net = nn.Sequential(
              nn.Flatten(1),
              nn.Linear(784, 200),
              nn.Tanh(),
              nn.Linear(200, 10))
  
          # inputs and labels are not required for dynamic graph.
          input = InputSpec([None, 784], 'float32', 'x')
          label = InputSpec([None, 1], 'int64', 'label')
          
          model = paddle.Model(net, input, label)
          optim = paddle.optimizer.SGD(learning_rate=1e-3,
              parameters=model.parameters())
          model.prepare(optim,
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
          
          transform = T.Compose([
              T.Transpose(),
              T.Normalize([127.5], [127.5])
          ])
          data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
          model.fit(data, epochs=2, batch_size=32, verbose=1)
863 864
    """

865
    def __init__(self, network, inputs=None, labels=None):
866
        self.mode = 'train'
867
        self.network = network
868 869
        self._inputs = None
        self._labels = None
870
        self._loss = None
871 872
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
873
        self._input_info = None
874
        self._is_shape_inferred = False
875
        self._test_dataloader = None
L
LiuChiachi 已提交
876
        self.stop_training = False
877

878 879 880 881 882
        if not in_dygraph_mode():
            if not isinstance(inputs, (list, dict, Input)):
                raise TypeError(
                    "'inputs' must be list or dict, and couldn't be None.")
        elif inputs:
L
LiuChiachi 已提交
883
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
884

885
        self._inputs = self._verify_spec(inputs, is_input=True)
886
        self._labels = self._verify_spec(labels)
887

888 889
        # init backend
        if fluid.in_dygraph_mode():
890
            dist.init_parallel_env()
891 892 893 894 895 896 897 898 899
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

    def train_batch(self, inputs, labels=None):
        """
        Run one training step on a batch of data.

        Args:
900 901 902 903 904 905 906
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
            labels (numpy.ndarray|Tensor|list): Batch of labels. It could be 
                a numpy array or paddle.Tensor, or a list of arrays or tensors 
                (in case the model has multiple labels). If has no labels, 
                set None. Default is None.
907 908 909 910 911 912 913 914 915 916 917

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
            
              import numpy as np
918
              import paddle
919 920
              import paddle.nn as nn
              from paddle.static import InputSpec
921

922
              device = paddle.set_device('cpu') # or 'gpu'
923

924 925 926 927 928 929 930 931
              net = nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10))

              input = InputSpec([None, 784], 'float32', 'x')
              label = InputSpec([None, 1], 'int64', 'label')
              model = paddle.Model(net, input, label)
932
              optim = paddle.optimizer.SGD(learning_rate=1e-3,
933
                  parameters=model.parameters())
934
              model.prepare(optim, paddle.nn.CrossEntropyLoss())
935 936 937 938 939
              data = np.random.random(size=(4,784)).astype(np.float32)
              label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
              loss = model.train_batch([data], [label])
              print(loss)
        """
940
        loss = self._adapter.train_batch(inputs, labels)
L
LiuChiachi 已提交
941
        if fluid.in_dygraph_mode() and self._input_info is None:
L
LiuChiachi 已提交
942
            self._update_inputs()
943
        return loss
944 945 946 947 948 949

    def eval_batch(self, inputs, labels=None):
        """
        Run one evaluating step on a batch of data.

        Args:
950 951 952 953 954 955 956
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
            labels (numpy.ndarray|Tensor|list): Batch of labels. It could be 
                a numpy array or paddle.Tensor, or a list of arrays or tensors 
                (in case the model has multiple labels). If has no labels, 
                set None. Default is None.
957 958 959 960 961 962 963 964 965 966 967

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
            
              import numpy as np
968
              import paddle
969 970
              import paddle.nn as nn
              from paddle.static import InputSpec
971

972
              device = paddle.set_device('cpu') # or 'gpu'
973

974 975 976 977 978 979 980 981
              net = nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10))

              input = InputSpec([None, 784], 'float32', 'x')
              label = InputSpec([None, 1], 'int64', 'label')
              model = paddle.Model(net, input, label)
982
              optim = paddle.optimizer.SGD(learning_rate=1e-3,
983
                  parameters=model.parameters())
984
              model.prepare(optim,
985
                            paddle.nn.CrossEntropyLoss())
986 987 988 989 990
              data = np.random.random(size=(4,784)).astype(np.float32)
              label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
              loss = model.eval_batch([data], [label])
              print(loss)
        """
991
        loss = self._adapter.eval_batch(inputs, labels)
L
LiuChiachi 已提交
992
        if fluid.in_dygraph_mode() and self._input_info is None:
L
LiuChiachi 已提交
993
            self._update_inputs()
994
        return loss
995

996
    def predict_batch(self, inputs):
997
        """
998
        Run one predicting step on a batch of data.
999 1000

        Args:
1001 1002 1003
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
            
              import numpy as np
1014
              import paddle
1015
              import paddle.nn as nn
L
LielinJiang 已提交
1016
              from paddle.static import InputSpec
1017

1018
              device = paddle.set_device('cpu') # or 'gpu'
L
LielinJiang 已提交
1019 1020 1021
              
              input = InputSpec([None, 784], 'float32', 'x')
              label = InputSpec([None, 1], 'int64', 'label')
1022

1023 1024 1025 1026 1027 1028
              net = nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10),
                  nn.Softmax())

L
LielinJiang 已提交
1029
              model = paddle.Model(net, input, label)
1030
              model.prepare()
1031
              data = np.random.random(size=(4,784)).astype(np.float32)
1032
              out = model.predict_batch([data])
1033 1034
              print(out)
        """
1035
        loss = self._adapter.predict_batch(inputs)
L
LiuChiachi 已提交
1036
        if fluid.in_dygraph_mode() and self._input_info is None:
L
LiuChiachi 已提交
1037
            self._update_inputs()
1038
        return loss
1039

1040 1041 1042 1043 1044
    def save(self, path, training=True):
        """  
        This function saves parameters, optimizer information or model and 
        paramters only for inference to path. It depends on the parameter
        `training`.
1045

1046 1047
        If `training` is set to True, the parameters saved contain all 
        the trainable Variable, will save to a file with suffix ".pdparams".
1048 1049 1050 1051
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1052
        This function will silently overwrite existing file at the target location.
1053

1054
        If `training` is set to False, only inference model will be saved.
1055 1056

        Args:
1057 1058 1059
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1060 1061
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1062 1063 1064 1065 1066 1067 1068

        Returns:
            None

        Examples:

            .. code-block:: python
1069

1070
                import paddle
1071
                import paddle.nn as nn
1072
                import paddle.vision.transforms as T
1073
                from paddle.static import InputSpec
1074

1075
                class Mnist(nn.Layer):
1076
                    def __init__(self):
1077
                        super(Mnist, self).__init__()
1078
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1079
                            nn.Flatten(1),
1080 1081 1082 1083
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1084

1085
                    def forward(self, x):
1086
                        return self.net(x)
1087

1088
                dynamic = True  # False
1089
                # if use static graph, do not set
1090 1091
                if not dynamic:
                    paddle.enable_static()
1092

1093 1094 1095
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1096
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1097
                    parameters=model.parameters())
1098
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1099 1100 1101 1102 1103 1104 1105
                
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                
1106
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1107 1108
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1109
        """
1110

1111
        if ParallelEnv().local_rank == 0:
1112 1113 1114 1115
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
            skip_mismatch (bool): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
                mismatch shape).
            reset_optimizer (bool): If True, ignore the providing file storing
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
                a optimizer has been set to the model. Default False.

        Returns:
            None

        Examples:

            .. code-block:: python
            
1150
              import paddle
1151
              import paddle.nn as nn
L
LielinJiang 已提交
1152 1153
              from paddle.static import InputSpec

1154
              device = paddle.set_device('cpu')
L
LielinJiang 已提交
1155 1156

              input = InputSpec([None, 784], 'float32', 'x')
1157 1158 1159 1160 1161

              model = paddle.Model(nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10),
L
LielinJiang 已提交
1162 1163
                  nn.Softmax()), input)

1164
              model.save('checkpoint/test')
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
              model.load('checkpoint/test')
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
                return pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
                    "{} is not found in the providing file.".format(key))
            if list(state.shape) != list(param.shape):
                raise ValueError(
                    "{} receives a shape {}, but the expected shape is {}.".
                    format(key, list(state.shape), list(param.shape)))
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
            assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
                    "Unknown postfix {} from weights".format(ext)
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1197
        for key, param in self.network.state_dict().items():
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
                        ("Skip loading for {}. ".format(key) + str(err)))
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

        optim_state = None if reset_optimizer else _load_state_from_path(
            path + ".pdopt")
        return self._adapter.load(matched_param_state, optim_state)

    def parameters(self, *args, **kwargs):
        """
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python

1226
              import paddle
1227
              import paddle.nn as nn
L
LielinJiang 已提交
1228
              from paddle.static import InputSpec
1229

L
LielinJiang 已提交
1230 1231
              input = InputSpec([None, 784], 'float32', 'x')
              
1232 1233 1234
              model = paddle.Model(nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
L
LielinJiang 已提交
1235 1236
                  nn.Linear(200, 10)), input)

1237 1238 1239 1240
              params = model.parameters()
        """
        return self._adapter.parameters()

1241
    def prepare(self, optimizer=None, loss=None, metrics=None):
1242 1243 1244 1245 1246 1247 1248
        """
        Configures the model before runing.

        Args:
            optimizer (Optimizer|None): Optimizer must be set in training
                and should be a Optimizer instance. It can be None in eval
                and test mode.
1249 1250
            loss (Loss|callable function|None): Loss function can
                be a `paddle.nn.Layer` instance or any callable function
1251 1252
                taken the predicted values and ground truth values as input.
                It can be None when there is no loss.
1253 1254 1255 1256 1257 1258 1259
            metrics (Metric|list of Metric|None): If metrics is set, all
                metrics will be calculated and output in train/eval mode.

        Returns:
            None
        """

1260 1261
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1262 1263 1264 1265 1266 1267 1268
            global _parallel_context_initialized
            if ParallelEnv().nranks > 1 and not _parallel_context_initialized:
                if fluid.in_dygraph_mode():
                    main_prog_seed = fluid.default_main_program().random_seed
                    startup_prog_seed = fluid.default_startup_program(
                    ).random_seed
                    fluid.disable_dygraph()
1269
                    paddle.disable_static(self._place)
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
                    fluid.default_startup_program(
                    ).random_seed = startup_prog_seed
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1280 1281 1282 1283 1284
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
                raise TypeError("'loss' must be sub classes of " \
                    "`paddle.nn.Layer` or any callable function.")
        self._loss = loss
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
        self._metrics = to_list(metrics)

        if not in_dygraph_mode():
            self._adapter.prepare()

    def fit(
            self,
            train_data=None,
            eval_data=None,
            batch_size=1,
            epochs=1,
            eval_freq=1,
            log_freq=10,
            save_dir=None,
            save_freq=1,
            verbose=2,
            drop_last=False,
            shuffle=True,
            num_workers=0,
            callbacks=None, ):
        """
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset|DataLoader): An iterable data loader is used for 
                train. An instance of paddle paddle.io.Dataset or 
                paddle.io.Dataloader is recomended. Default: None.
            eval_data (Dataset|DataLoader): An iterable data loader is used for
                evaluation at the end of epoch. If None, will not do evaluation. 
                An instance of paddle.io.Dataset or paddle.io.Dataloader 
                is recomended. Default: None.
            batch_size (int): Integer number. The batch size of train_data
                and eval_data. When train_data and eval_data are both the
                instance of Dataloader, this parameter will be ignored.
                Default: 1.
            epochs (int): Integer number. The number of epochs to train
                the model. Default: 1.
            eval_freq (int): The frequency, in number of epochs, an evalutation
                is performed. Default: 1.
            log_freq (int): The frequency, in number of steps, the training logs
                are printed. Default: 10.
            save_dir(str|None): The directory to save checkpoint during training.
                If None, will not save checkpoint. Default: None.
            save_freq (int): The frequency, in number of epochs, to save
                checkpoint. Default: 1.
            verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
                1 = progress bar, 2 = one line per epoch. Default: 2.
            drop_last (bool): Whether drop the last incomplete batch of
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
            shuffle (bool): Whther to shuffle train_data. When train_data is
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
            num_workers (int): The number of subprocess to load data, 0 for no
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
            callbacks (Callback|None): A list of `Callback` instances to apply
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.

        Returns:
            None

        Examples:
            1. An example use Dataset and set btch size, shuffle in fit.
               How to make a batch is done internally.

            .. code-block:: python

1363
              import paddle
1364
              import paddle.vision.transforms as T
1365
              from paddle.vision.datasets import MNIST
1366
              from paddle.static import InputSpec
1367 1368

              dynamic = True
1369 1370 1371
              if not dynamic:
                  paddle.enable_static()

1372 1373 1374 1375
              transform = T.Compose([
                  T.Transpose(),
                  T.Normalize([127.5], [127.5])
              ])
1376 1377
              train_dataset = MNIST(mode='train', transform=transform)
              val_dataset = MNIST(mode='test', transform=transform)
1378
           
1379 1380
              input = InputSpec([None, 1, 28, 28], 'float32', 'image')
              label = InputSpec([None, 1], 'int64', 'label')
1381
           
1382
              model = paddle.Model(
L
LielinJiang 已提交
1383
                  paddle.vision.models.LeNet(),
1384
                  input, label)
1385 1386
              optim = paddle.optimizer.Adam(
                  learning_rate=0.001, parameters=model.parameters())
1387 1388
              model.prepare(
                  optim,
1389
                  paddle.nn.CrossEntropyLoss(),
1390
                  paddle.metric.Accuracy(topk=(1, 2)))
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
              model.fit(train_dataset,
                        val_dataset,
                        epochs=2,
                        batch_size=64,
                        save_dir='mnist_checkpoint')

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python

1402
              import paddle
1403
              import paddle.vision.transforms as T
1404
              from paddle.vision.datasets import MNIST
1405
              from paddle.static import InputSpec
1406 1407

              dynamic = True
1408 1409
              if not dynamic:
                  paddle.enable_static()
1410 1411 1412 1413 1414
              
              transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
1415
              train_dataset = MNIST(mode='train', transform=transform)
1416
              train_loader = paddle.io.DataLoader(train_dataset,
1417 1418
                  batch_size=64)
              val_dataset = MNIST(mode='test', transform=transform)
1419
              val_loader = paddle.io.DataLoader(val_dataset,
1420
                  batch_size=64)
1421
           
1422 1423
              input = InputSpec([None, 1, 28, 28], 'float32', 'image')
              label = InputSpec([None, 1], 'int64', 'label')
1424
           
1425
              model = paddle.Model(
L
LielinJiang 已提交
1426
                  paddle.vision.models.LeNet(), input, label)
1427 1428
              optim = paddle.optimizer.Adam(
                  learning_rate=0.001, parameters=model.parameters())
1429 1430
              model.prepare(
                  optim,
1431
                  paddle.nn.CrossEntropyLoss(),
1432
                  paddle.metric.Accuracy(topk=(1, 2)))
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
              model.fit(train_loader,
                        val_loader,
                        epochs=2,
                        save_dir='mnist_checkpoint')
        """

        assert train_data is not None, \
                "train_data must be given!"

        if isinstance(train_data, Dataset):
            train_sampler = DistributedBatchSampler(
                train_data,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last)
            train_loader = DataLoader(
                train_data,
                batch_sampler=train_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size)
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader

        steps = self._len_data_loader(train_loader)
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(), )

L
LiuChiachi 已提交
1486 1487 1488
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
                cbks.on_begin('eval', {
                    'steps': eval_steps,
                    'metrics': self._metrics_name()
                })

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
L
LiuChiachi 已提交
1506 1507
                if self.stop_training:
                    break
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

        cbks.on_end('train', logs)
        self._test_dataloader = None

    def evaluate(
            self,
            eval_data,
            batch_size=1,
            log_freq=10,
            verbose=2,
            num_workers=0,
            callbacks=None, ):
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
                evaluation. An instance of paddle.io.Dataset or 
                paddle.io.Dataloader is recomended.
            batch_size (int): Integer number. The batch size of train_data
                and eval_data.  When eval_data is the instance of Dataloader,
                this argument will be ignored. Default: 1.
            log_freq (int): The frequency, in number of steps, the eval logs
                are printed. Default: 10.
            verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
                1 = progress bar, 2 = one line per epoch. Default: 2.
            num_workers (int): The number of subprocess to load data,
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
            callbacks (Callback|None): A list of `Callback` instances to apply
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
1546 1547

          .. code-block:: python
1548

1549
            import paddle
1550
            import paddle.vision.transforms as T
1551
            from paddle.static import InputSpec
1552

1553
            # declarative mode
1554 1555 1556 1557 1558
            transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
            val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
1559

1560 1561 1562
            input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
            label = InputSpec([None, 1], 'int64', 'label')
            model = paddle.Model(paddle.vision.models.LeNet(), input, label)
1563
            model.prepare(metrics=paddle.metric.Accuracy())
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
            result = model.evaluate(val_dataset, batch_size=64)
            print(result)
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size)
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(), )

        eval_steps = self._len_data_loader(eval_loader)
        cbks.on_begin('eval',
                      {'steps': eval_steps,
                       'metrics': self._metrics_name()})

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

    def predict(self,
                test_data,
                batch_size=1,
                num_workers=0,
                stack_outputs=False,
                callbacks=None):
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
            batch_size (int): Integer number. The batch size of train_data and eval_data.
                When train_data and eval_data are both the instance of Dataloader, this
                argument will be ignored. Default: 1.
            num_workers (int): The number of subprocess to load data, 0 for no subprocess 
                used and loading data in main process. When train_data and eval_data are
                both the instance of Dataloader, this argument will be ignored. Default: 0.
1625
            stack_outputs (bool): Whether stack output field like a batch, as for an output
1626 1627 1628 1629 1630
                filed of a sample is in shape [X, Y], test_data contains N samples, predict
                output field will be in shape [N, X, Y] if stack_output is True, and will
                be a length N list in shape [[X, Y], [X, Y], ....[X, Y]] if stack_outputs
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
1631
            callbacks(Callback): A Callback instance, default None.
1632 1633 1634 1635
        Returns:
            list: output of models.

        Examples:
1636 1637

          .. code-block:: python
1638 1639

            import numpy as np
1640
            import paddle
1641
            from paddle.static import InputSpec
1642

1643
            class MnistDataset(paddle.vision.datasets.MNIST):
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
                def __init__(self, mode, return_label=True):
                    super(MnistDataset, self).__init__(mode=mode)
                    self.return_label = return_label

                def __getitem__(self, idx):
                    img = np.reshape(self.images[idx], [1, 28, 28])
                    if self.return_label:
                        return img, np.array(self.labels[idx]).astype('int64')
                    return img,

                def __len__(self):
                    return len(self.images)

            test_dataset = MnistDataset(mode='test', return_label=False)

L
LielinJiang 已提交
1659
            # imperative mode
1660 1661
            input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
            model = paddle.Model(paddle.vision.models.LeNet(), input)
1662
            model.prepare()
1663
            result = model.predict(test_dataset, batch_size=64)
1664
            print(len(result[0]), result[0][0].shape)
1665

L
LielinJiang 已提交
1666
            # declarative mode
1667
            device = paddle.set_device('cpu')
L
LielinJiang 已提交
1668 1669 1670
            paddle.enable_static()
            input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
            model = paddle.Model(paddle.vision.models.LeNet(), input)
1671
            model.prepare()
L
LielinJiang 已提交
1672

1673 1674
            result = model.predict(test_dataset, batch_size=64)
            print(len(result[0]), result[0][0].shape)
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
        """

        if test_data is not None and isinstance(test_data, Dataset):
            test_sampler = DistributedBatchSampler(
                test_data, batch_size=batch_size)
            test_loader = DataLoader(
                test_data,
                batch_sampler=test_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

        cbks = config_callbacks(callbacks, model=self, verbose=1)

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

1696
        cbks.on_begin('predict', logs)
1697 1698 1699

        outputs = []

1700
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

1711
        cbks.on_end('predict', logs)
1712 1713
        return outputs

1714
    def _save_inference_model(self, path):
1715
        """
1716
        Save inference model can be used in static or dynamic mode.
1717 1718

        Args:
1719 1720
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
1721
        Returns:
1722
            None
1723 1724
        """

1725
        if fluid.in_dygraph_mode():
1726 1727
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
1728
                if self._input_info is None:  # No provided or inferred
1729
                    raise RuntimeError(
L
LiuChiachi 已提交
1730
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
1731 1732 1733 1734
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
L
LiuChiachi 已提交
1735 1736
                        % self._input_info[0])

1737
                paddle.jit.save(layer, path, input_spec=self._inputs)
1738

1739
        else:
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
                    "file_prefix is empty string.")

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1756 1757 1758 1759 1760 1761 1762 1763 1764
            prog = self._adapter._progs.get('test', None)
            assert prog, \
                "Model is not ready, please call `model.prepare()` first"

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

1765 1766
            fluid.io.save_inference_model(
                model_path,
1767 1768 1769 1770 1771
                input_names,
                endpoints,
                self._adapter._executor,
                main_program=infer_prog,
                model_filename=model_filename,
1772
                params_filename=params_filename)
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

    def _run_one_epoch(self, data_loader, callbacks, mode, logs={}):
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
            # 4. custumed iterator yield seperated inputs and labels:
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
1791

1792 1793 1794 1795 1796
            batch_size = data[0].shape()[0] if callable(data[
                0].shape) else data[0].shape[0]

            callbacks.on_batch_begin(mode, step, logs)

1797
            if mode != 'predict':
1798 1799
                outs = getattr(self, mode + '_batch')(data[:len(self._inputs)],
                                                      data[len(self._inputs):])
1800
                if self._metrics and self._loss:
1801
                    metrics = [[l[0] for l in outs[0]]]
1802
                elif self._loss:
1803 1804 1805
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
1816
                if self._inputs is not None:
1817
                    outs = self.predict_batch(data[:len(self._inputs)])
L
LielinJiang 已提交
1818
                else:
1819
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
1820

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
                outputs.append(outs)

            logs['step'] = step
            if mode == 'train' or self._adapter._merge_count.get(
                    mode + '_batch', 0) <= 0:
                logs['batch_size'] = batch_size * ParallelEnv().nranks
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
        self._reset_metrics()

1833
        if mode == 'predict':
1834 1835 1836
            return logs, outputs
        return logs

L
LielinJiang 已提交
1837
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
        """Prints a string summary of the network.

        Args:
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor. 
                    if not set, input_size will get from ``self._inputs`` if network only have 
                    one input, input_size can be tuple or InputSpec. if model have multiple 
                    input, input_size must be a list which contain every input's shape. 
                    Default: None.
            dtypes (str, optional): if dtypes is None, 'float32' will be used, Default: None.

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python

              import paddle
              from paddle.static import InputSpec
           
              input = InputSpec([None, 1, 28, 28], 'float32', 'image')
              label = InputSpec([None, 1], 'int64', 'label')
           
L
LielinJiang 已提交
1860
              model = paddle.Model(paddle.vision.LeNet(),
L
LielinJiang 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
                  input, label)
              optim = paddle.optimizer.Adam(
                  learning_rate=0.001, parameters=model.parameters())
              model.prepare(
                  optim,
                  paddle.nn.CrossEntropyLoss())

              params_info = model.summary()
              print(params_info)

        """
1872 1873 1874 1875 1876 1877
        assert (input_size is not None or self._inputs is not None
                ), "'input_size' or 'self._input' must be set"
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
L
LielinJiang 已提交
1878
        return summary(self.network, _input_size, dtype)
L
LielinJiang 已提交
1879

L
LiuChiachi 已提交
1880
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
1881 1882
        out_specs = []

1883 1884 1885 1886 1887 1888
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
1889 1890 1891
                # While Saving inference model in dygraph, and providing inputs only in running.
                if shapes is not None and dtypes is not None and fluid.in_dygraph_mode(
                ):
1892 1893
                    out_specs = [
                        Input(
L
LiuChiachi 已提交
1894
                            name=n, dtype=dtypes[i], shape=shapes[i])
1895 1896 1897 1898 1899 1900 1901
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
            assert is_input == False
            out_specs = [specs[n] \
                for n in extract_args(self.network.forward) if n != 'self']
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
1913 1914
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
1915 1916 1917

        return out_specs

1918 1919 1920 1921 1922
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
1923
        metrics_name = ['loss'] if self._loss else []
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
1934 1935 1936

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
1937 1938 1939 1940 1941
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
            self._inputs = self._verify_spec(None, self._input_info[0],
                                             self._input_info[1], True)
            self._is_shape_inferred = True