data_transform.cc 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/data_transform.h"
16

17
#include "paddle/phi/api/lib/kernel_dispatch.h"
18
#include "paddle/phi/api/lib/utils/storage.h"
19 20 21
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/transfer_layout_kernel.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

#include "paddle/fluid/framework/data_device_transform.h"

namespace paddle {
namespace experimental {

inline bool NeedTransformDataType(const DataType& input,
                                  const DataType& target,
                                  const TransformFlag& transform_flag) {
  return input != target &&
         (transform_flag.need_trans_data_type() ||
          target == DataType::COMPLEX64 || target == DataType::COMPLEX128);
}

inline bool NeedTransformPlace(const paddle::platform::Place& input,
                               const Backend& target,
                               const TransformFlag& transform_flag) {
39 40 41 42 43 44 45 46 47 48 49
  // NOTE(dev): The default value of TransformFlag is True, if it is set with
  // False
  // somewhere such as api.yaml or backward.yaml that means we should skip data
  // transform. Because "stop_transform_" has highest priority.
  if (!transform_flag.need_trans_backend()) {
    return false;
  }
  bool ret = input.GetType() == AllocationType::GPUPINNED ||
             (target != Backend::ALL_BACKEND &&
              phi::TransToPhiBackend(input) !=
                  (target != Backend::GPUDNN ? target : Backend::GPU));
50 51 52 53 54 55 56 57 58 59 60 61
  return ret;
}

inline bool NeedTransformLayout(const DataLayout& input,
                                const DataLayout& target,
                                const TransformFlag& transform_flag) {
  bool ret = transform_flag.need_trans_layout() &&
             (input != DataLayout::ALL_LAYOUT &&
              target != DataLayout::ALL_LAYOUT && input != target);
  return ret;
}

62 63
inline phi::DenseTensor TransDataLayout(const phi::DenseTensor& tensor,
                                        DataLayout layout) {
64 65 66 67
  auto& pool = paddle::platform::DeviceContextPool::Instance();
  VLOG(3) << "DataLayoutTransform src_layout: " << tensor.layout()
          << " dst_layout: " << layout;
  if (platform::is_cpu_place(tensor.place())) {
68 69
    auto* dev_ctx = static_cast<phi::CPUContext*>(pool.Get(tensor.place()));
    return phi::TransferLayout(*dev_ctx, tensor, layout);
70
  } else {
71
    PADDLE_THROW(phi::errors::PreconditionNotMet(
72 73 74 75 76
        "Unsupported data layout cast from CPU to GPU."));
  }
}

template <typename Context>
77 78 79
phi::DenseTensor CastDateType(const Context& dev_ctx,
                              const phi::DenseTensor& tensor,
                              DataType dtype) {
80 81
  switch (tensor.dtype()) {
    case DataType::FLOAT32:
82
      return phi::Cast<float>(dev_ctx, tensor, dtype);
83
    case DataType::FLOAT64:
84
      return phi::Cast<double>(dev_ctx, tensor, dtype);
85
    case DataType::INT32:
86
      return phi::Cast<int32_t>(dev_ctx, tensor, dtype);
87
    case DataType::INT64:
88
      return phi::Cast<int64_t>(dev_ctx, tensor, dtype);
89
    case DataType::FLOAT16:
90
      return phi::Cast<phi::dtype::float16>(dev_ctx, tensor, dtype);
91
    case DataType::BFLOAT16:
92
      return phi::Cast<phi::dtype::bfloat16>(dev_ctx, tensor, dtype);
93
    case DataType::BOOL:
94
      return phi::Cast<bool>(dev_ctx, tensor, dtype);
95
    case DataType::INT16:
96
      return phi::Cast<int16_t>(dev_ctx, tensor, dtype);
97
    case DataType::UINT8:
98
      return phi::Cast<uint8_t>(dev_ctx, tensor, dtype);
99
    default:
100
      PADDLE_THROW(phi::errors::Unimplemented(
101 102 103 104 105 106
          "Data type (%s) is not supported when casting data type.",
          tensor.dtype()));
  }
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
107 108 109
phi::DenseTensor CastDateType(const phi::GPUContext& dev_ctx,
                              const phi::DenseTensor& tensor,
                              DataType dtype) {
110 111
  switch (tensor.dtype()) {
    case DataType::FLOAT32:
112
      return phi::Cast<float>(dev_ctx, tensor, dtype);
113
    case DataType::FLOAT64:
114
      return phi::Cast<double>(dev_ctx, tensor, dtype);
115
    case DataType::INT32:
116
      return phi::Cast<int32_t>(dev_ctx, tensor, dtype);
117
    case DataType::INT64:
118
      return phi::Cast<int64_t>(dev_ctx, tensor, dtype);
119
    case DataType::FLOAT16:
120
      return phi::Cast<phi::dtype::float16>(dev_ctx, tensor, dtype);
121
    case DataType::BOOL:
122
      return phi::Cast<bool>(dev_ctx, tensor, dtype);
123
    case DataType::INT16:
124
      return phi::Cast<int16_t>(dev_ctx, tensor, dtype);
125
    case DataType::UINT8:
126
      return phi::Cast<uint8_t>(dev_ctx, tensor, dtype);
127
    default:
128
      PADDLE_THROW(phi::errors::Unimplemented(
129 130 131 132 133 134
          "Data type (%s) is not supported when casting data type.",
          tensor.dtype()));
  }
}
#endif

135 136
inline phi::DenseTensor TransDataType(const phi::DenseTensor& tensor,
                                      DataType dtype) {
137 138 139 140 141
  auto& pool = paddle::platform::DeviceContextPool::Instance();

  VLOG(3) << "DataTypeTransform src_dtype: " << tensor.dtype()
          << " dst_dtype: " << dtype;

142 143
  phi::DenseTensor out(
      phi::make_intrusive<paddle::experimental::SharedStorage>(tensor.place()),
144 145 146
      {dtype, tensor.dims(), tensor.layout()});

  if (platform::is_cpu_place(tensor.place())) {
147
    auto* dev_ctx = static_cast<phi::CPUContext*>(pool.Get(tensor.place()));
148 149 150
    return CastDateType(*dev_ctx, tensor, dtype);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  } else if (platform::is_gpu_place(tensor.place())) {
151
    auto* dev_ctx = static_cast<phi::GPUContext*>(pool.Get(tensor.place()));
152 153 154
    return CastDateType(*dev_ctx, tensor, dtype);
#endif
  } else {
155
    PADDLE_THROW(phi::errors::Unimplemented(
156 157 158 159 160
        "Place type is not supported when casting data type."));
  }
  return out;
}

161 162 163 164
phi::DenseTensor TransformData(const phi::DenseTensor& tensor,
                               const phi::TensorArgDef& target_args_def,
                               const TransformFlag& transform_flag) {
  phi::DenseTensor out = tensor;
165 166 167 168 169 170 171 172 173 174 175 176
  if (NeedTransformLayout(
          tensor.layout(), target_args_def.layout, transform_flag)) {
    out = TransDataLayout(out, target_args_def.layout);
  }

  if (NeedTransformDataType(
          tensor.dtype(), target_args_def.dtype, transform_flag)) {
    out = TransDataType(out, target_args_def.dtype);
  }

  if (NeedTransformPlace(
          out.place(), target_args_def.backend, transform_flag)) {
177
    phi::DenseTensor result;
178
    framework::TransDataDevice(
179
        out, phi::TransToPhiPlace(target_args_def.backend), &result);
180 181 182 183 184
    out = result;
  }
  return out;
}

185
std::shared_ptr<phi::DenseTensor> PrepareData(
186
    const Tensor& input,
187
    const phi::TensorArgDef& target_args_def,
188 189
    const TransformFlag& transform_flag) {
  const auto& tensor_in = input.impl();
Z
zyfncg 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  if (tensor_in) {
    phi::DenseTensor& dense_tensor =
        *static_cast<phi::DenseTensor*>(tensor_in.get());
    if (!transform_flag.NeedTransform() || !dense_tensor.initialized() ||
        (!NeedTransformPlace(
             dense_tensor.place(), target_args_def.backend, transform_flag) &&
         !NeedTransformDataType(
             dense_tensor.dtype(), target_args_def.dtype, transform_flag) &&
         !NeedTransformLayout(
             dense_tensor.layout(), target_args_def.layout, transform_flag))) {
      return std::static_pointer_cast<phi::DenseTensor>(tensor_in);
    }
    phi::DenseTensor out =
        TransformData(dense_tensor, target_args_def, transform_flag);
    return std::make_shared<phi::DenseTensor>(std::move(out));
205
  }
Z
zyfncg 已提交
206
  return nullptr;
207 208
}

209 210 211 212 213 214 215 216 217 218
std::shared_ptr<phi::DenseTensor> PrepareData(
    const paddle::optional<Tensor>& input,
    const phi::TensorArgDef& target_args_def,
    const TransformFlag& transform_flag) {
  if (input) {
    return PrepareData(*input, target_args_def, transform_flag);
  }
  return {nullptr};
}

H
hong 已提交
219 220 221 222 223 224 225 226 227 228 229
std::shared_ptr<phi::DenseTensor> PrepareData(
    const paddle::optional<const Tensor&> input,
    const phi::TensorArgDef& target_args_def,
    const TransformFlag& transform_flag) {
  if (input.get_ptr() != nullptr) {
    return PrepareData(*(input.get_ptr()), target_args_def, transform_flag);
  }

  return {nullptr};
}

230
std::unique_ptr<std::vector<phi::DenseTensor>> PrepareData(
231
    const std::vector<Tensor>& inputs,
232
    const phi::TensorArgDef& target_args_def,
233
    const TransformFlag& transform_flag) {
234
  auto pt_tensors = std::make_unique<std::vector<phi::DenseTensor>>();
235 236 237 238 239 240 241 242 243 244 245 246
  pt_tensors->reserve(inputs.size());

  for (const auto& input : inputs) {
    const auto& tensor_in = input.impl();
    if (!transform_flag.NeedTransform() || !tensor_in->initialized() ||
        (!NeedTransformPlace(
             tensor_in->place(), target_args_def.backend, transform_flag) &&
         !NeedTransformDataType(
             tensor_in->dtype(), target_args_def.dtype, transform_flag) &&
         !NeedTransformLayout(
             tensor_in->layout(), target_args_def.layout, transform_flag))) {
      pt_tensors->emplace_back(
247
          *std::dynamic_pointer_cast<phi::DenseTensor>(tensor_in));
248 249
    } else {
      pt_tensors->emplace_back(
250
          TransformData(*(static_cast<phi::DenseTensor*>(tensor_in.get())),
251 252 253 254 255
                        target_args_def,
                        transform_flag));
    }
  }

256
  return pt_tensors;
257 258 259 260
}

}  // namespace experimental
}  // namespace paddle