fused_embedding_seq_pool_op.cc 7.5 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fused_embedding_seq_pool_op.h"
#include "paddle/fluid/framework/var_type_inference.h"

namespace paddle {
namespace operators {

21
class FusedEmbeddingSeqPoolOp : public framework::OperatorWithKernel {
M
minqiyang 已提交
22 23 24 25 26
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("W"),
27
                   "Input W of FusedEmbeddingSeqPoolOp should not be null.");
M
minqiyang 已提交
28
    PADDLE_ENFORCE(ctx->HasInput("Ids"),
29
                   "Input Ids of FusedEmbeddingSeqPoolOp should not be null.");
M
minqiyang 已提交
30
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
31
                   "Output of FusedEmbeddingSeqPoolOp should not be null.");
M
minqiyang 已提交
32 33 34

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
35
    const std::string& combiner = ctx->Attrs().Get<std::string>("combiner");
M
minqiyang 已提交
36 37

    PADDLE_ENFORCE_EQ(table_dims.size(), 2);
M
minqiyang 已提交
38
    PADDLE_ENFORCE_GE(ids_dims.size(), 1,
39 40
                      "The dim size of the 'Ids' tensor must greater than 1.");
    PADDLE_ENFORCE_EQ(ids_dims[ids_dims.size() - 1], 1,
M
minqiyang 已提交
41
                      "The last dimension of the 'Ids' tensor must be 1.");
42 43
    // we only support sum now
    PADDLE_ENFORCE_EQ(combiner, "sum");
M
minqiyang 已提交
44

M
minqiyang 已提交
45 46 47 48 49
    int64_t last_dim = table_dims[1];
    for (int i = 1; i != ids_dims.size(); ++i) {
      last_dim *= ids_dims[i];
    }

50
    if (ctx->IsRuntime()) {
M
minqiyang 已提交
51 52
      framework::Variable* ids_var =
          boost::get<framework::Variable*>(ctx->GetInputVarPtrs("Ids")[0]);
53
      const auto& ids_lod = ids_var->Get<LoDTensor>().lod();
M
minqiyang 已提交
54

55 56 57 58 59
      // in run time, the LoD of ids must be 1
      PADDLE_ENFORCE(ids_lod.size(), 1u,
                     "The LoD level of Input(Ids) must be 1");
      PADDLE_ENFORCE_GE(ids_lod[0].size(), 1u, "The LoD could NOT be empty");

M
minqiyang 已提交
60
      int64_t batch_size = ids_lod[0].size() - 1;
61 62 63

      // in run time, the shape from Ids -> output
      // should be [seq_length, 1] -> [batch_size, embedding_size]
M
minqiyang 已提交
64
      ctx->SetOutputDim("Out", framework::make_ddim({batch_size, last_dim}));
65 66
    } else {
      // in compile time, the lod level of ids must be 1
M
minqiyang 已提交
67 68
      framework::VarDesc* ids_desc =
          boost::get<framework::VarDesc*>(ctx->GetInputVarPtrs("Ids")[0]);
69 70 71 72
      PADDLE_ENFORCE_EQ(ids_desc->GetLoDLevel(), 1);

      // in compile time, the shape from Ids -> output
      // should be [-1, 1] -> [-1, embedding_size]
M
minqiyang 已提交
73
      ctx->SetOutputDim("Out", framework::make_ddim({-1, last_dim}));
M
minqiyang 已提交
74 75 76 77 78 79 80 81 82 83 84
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W"));
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

85
class FusedEmbeddingSeqPoolOpMaker : public framework::OpProtoAndCheckerMaker {
M
minqiyang 已提交
86 87 88 89 90 91 92 93 94 95
 public:
  void Make() override {
    AddInput("W",
             "(Tensor) The input represents embedding tensors, "
             "which is a learnable parameter.");
    AddInput("Ids",
             "An input with type int32 or int64 "
             "contains the ids to be looked up in W. "
             "The last dimension size must be 1.");
    AddOutput("Out", "The lookup results, which have the same type as W.");
96 97 98 99 100 101
    AddAttr<std::string>("combiner",
                         "(string, default sum) "
                         "A string specifying the reduction op. Currently sum "
                         "are supported, sum computes the weighted sum of the "
                         "embedding results for each row.")
        .SetDefault("sum");
M
minqiyang 已提交
102 103 104 105 106 107
    // NOTE(minqiyang): grad_inplace is an temporal attribute,
    // please do NOT set this attribute in python layer.
    AddAttr<bool>("grad_inplace",
                  "(boolean, default false) "
                  "If the grad op reuse the input's variable.")
        .SetDefault(false);
M
minqiyang 已提交
108 109 110 111 112
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update.")
        .SetDefault(false);
    AddComment(R"DOC(
113 114 115
FusedEmbeddingSeqPool Operator.

Computes embeddings for the given ids and weights.
M
minqiyang 已提交
116 117

This operator is used to perform lookups on the parameter W,
118 119
then computes the weighted sum of the lookups results for each row
and concatenated into a dense tensor.
M
minqiyang 已提交
120

121 122
The input Ids should carry the LoD (Level of Details) information.
And the output will change the LoD information with input Ids.
M
minqiyang 已提交
123 124 125 126 127

)DOC");
  }
};

128
class FusedEmbeddingSeqPoolOpGradDescMaker
M
minqiyang 已提交
129 130 131 132 133
    : public framework::DefaultGradOpDescMaker<true> {
  using ::paddle::framework::DefaultGradOpDescMaker<
      true>::DefaultGradOpDescMaker;

 protected:
134 135 136
  virtual std::string GradOpType() const {
    return "fused_embedding_seq_pool_grad";
  }
M
minqiyang 已提交
137 138
};

139
class FusedEmbeddingSeqPoolOpGrad : public framework::OperatorWithKernel {
M
minqiyang 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W"));
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

156 157
class FusedEmbeddingSeqPoolOpGradVarTypeInference
    : public framework::VarTypeInference {
M
minqiyang 已提交
158 159 160 161 162 163 164
 public:
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
    auto out_var_name = op_desc.Output(framework::GradVarName("W")).front();
    auto attr = op_desc.GetAttr("is_sparse");
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
165 166
      VLOG(3) << "fused_embedding_seq_pool_grad op "
              << framework::GradVarName("W") << " is set to SelectedRows";
M
minqiyang 已提交
167 168 169
      block->Var(out_var_name)
          ->SetType(framework::proto::VarType::SELECTED_ROWS);
    } else {
170 171
      VLOG(3) << "fused_embedding_seq_pool_grad op "
              << framework::GradVarName("W") << " is set to LoDTensor";
M
minqiyang 已提交
172 173 174 175 176 177 178 179 180 181
      block->Var(out_var_name)->SetType(framework::proto::VarType::LOD_TENSOR);
    }
    block->Var(out_var_name)->SetDataType(block->Var("W")->GetDataType());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
182 183 184 185 186 187 188 189 190 191 192 193 194
REGISTER_OPERATOR(fused_embedding_seq_pool, ops::FusedEmbeddingSeqPoolOp,
                  ops::FusedEmbeddingSeqPoolOpGradDescMaker,
                  ops::FusedEmbeddingSeqPoolOpMaker);
REGISTER_OPERATOR(fused_embedding_seq_pool_grad,
                  ops::FusedEmbeddingSeqPoolOpGrad,
                  ops::FusedEmbeddingSeqPoolOpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(fused_embedding_seq_pool,
                       ops::FusedEmbeddingSeqPoolKernel<float>,
                       ops::FusedEmbeddingSeqPoolKernel<double>);
REGISTER_OP_CPU_KERNEL(fused_embedding_seq_pool_grad,
                       ops::FusedEmbeddingSeqPoolGradKernel<float>,
                       ops::FusedEmbeddingSeqPoolGradKernel<double>);