lstm_kernel.h 5.4 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "hl_activation_functions.h"

#ifdef __CUDA_ARCH__
#define INLINE __device__ inline
#else
#define INLINE inline
#endif

namespace paddle {
namespace operators {
namespace math {
namespace detail {

namespace forward {

template <class T>
class lstm {
 public:
  INLINE void operator()(T &valueIn, T &valueIg, T &valueFg, T &valueOg,
                         T &prevState, T &state, T &stateAtv, T &output,
                         T &checkI, T &checkF, T &checkO,
                         Active<T>::forward actInput,
                         Active<T>::forward actGate,
                         Active<T>::forward actState) {
    valueIn = actInput(valueIn);
    valueIg = actGate(valueIg + prevState * checkI);
    valueFg = actGate(valueFg + prevState * checkF);
    state = valueIn * valueIg + prevState * valueFg;
    valueOg = actGate(valueOg + state * checkO);
    stateAtv = actState(state);
    output = valueOg * stateAtv;
  }
#ifndef __NVCC__
#ifndef __AVX__
  static const bool avx = false;
#else
  static const bool avx = true;
  INLINE void operator()(__m256 &valueIn, __m256 &valueIg, __m256 &valueFg,
                         __m256 &valueOg, __m256 &prevState, __m256 &state,
                         __m256 &stateAtv, __m256 &output, __m256 &checkI,
                         __m256 &checkF, __m256 &checkO,
                         Active<__m256>::forward actInput,
                         Active<__m256>::forward actGate,
                         Active<__m256>::forward actState) {
    valueIn = actInput(valueIn);
    valueIg = actGate(_mm256_add_ps(valueIg, _mm256_mul_ps(prevState, checkI)));
    valueFg = actGate(_mm256_add_ps(valueFg, _mm256_mul_ps(prevState, checkF)));
    state = _mm256_add_ps(_mm256_mul_ps(valueIn, valueIg),
                          _mm256_mul_ps(prevState, valueFg));
    valueOg = actGate(_mm256_add_ps(valueOg, _mm256_mul_ps(state, checkO)));
    stateAtv = actState(state);
    output = _mm256_mul_ps(valueOg, stateAtv);
  }
#endif
#endif
};

}  // namespace forward

namespace backward {

template <class T>
class lstm {
 public:
  INLINE void operator()(T &valueIn, T &valueIg, T &valueFg, T &valueOg,
                         T &gradIn, T &gradIg, T &gradFg, T &gradOg,
                         T &prevState, T &prevStateGrad, T &state, T &stateGrad,
                         T &stateAtv, T &outputGrad, T &checkI, T &checkF,
                         T &checkO, T &checkIGrad, T &checkFGrad, T &checkOGrad,
                         Active<T>::backward actInput,
                         Active<T>::backward actGate,
                         Active<T>::backward actState) {
    gradOg = actGate(outputGrad * stateAtv, valueOg);
    stateGrad += actState(outputGrad * valueOg, stateAtv) + gradOg * checkO;
    gradIn = actInput(stateGrad * valueIg, valueIn);
    gradIg = actGate(stateGrad * valueIn, valueIg);
    gradFg = actGate(stateGrad * prevState, valueFg);
    prevStateGrad = gradIg * checkI + gradFg * checkF + stateGrad * valueFg;
    checkIGrad = gradIg * prevState;
    checkFGrad = gradFg * prevState;
    checkOGrad = gradOg * state;
  }
#ifndef __NVCC__
#ifndef __AVX__
  static const bool avx = false;
#else
  static const bool avx = true;
  INLINE void operator()(__m256 &valueIn, __m256 &valueIg, __m256 &valueFg,
                         __m256 &valueOg, __m256 &gradIn, __m256 &gradIg,
                         __m256 &gradFg, __m256 &gradOg, __m256 &prevState,
                         __m256 &prevStateGrad, __m256 &state,
                         __m256 &stateGrad, __m256 &stateAtv,
                         __m256 &outputGrad, __m256 &checkI, __m256 &checkF,
                         __m256 &checkO, __m256 &checkIGrad, __m256 &checkFGrad,
                         __m256 &checkOGrad, Active<__m256>::backward actInput,
                         Active<__m256>::backward actGate,
                         Active<__m256>::backward actState) {
    gradOg = actGate(_mm256_mul_ps(outputGrad, stateAtv), valueOg);
    stateGrad = _mm256_add_ps(
        actState(_mm256_mul_ps(outputGrad, valueOg), stateAtv), stateGrad);
    stateGrad = _mm256_add_ps(_mm256_mul_ps(gradOg, checkO), stateGrad);
    gradIn = actInput(_mm256_mul_ps(stateGrad, valueIg), valueIn);
    gradIg = actGate(_mm256_mul_ps(stateGrad, valueIn), valueIg);
    gradFg = actGate(_mm256_mul_ps(stateGrad, prevState), valueFg);
    prevStateGrad = _mm256_add_ps(_mm256_mul_ps(gradIg, checkI),
                                  _mm256_mul_ps(gradFg, checkF));
    prevStateGrad =
        _mm256_add_ps(_mm256_mul_ps(stateGrad, valueFg), prevStateGrad);
    checkIGrad = _mm256_mul_ps(gradIg, prevState);
    checkFGrad = _mm256_mul_ps(gradFg, prevState);
    checkOGrad = _mm256_mul_ps(gradOg, state);
  }
#endif
#endif
};

}  // namespace backward

}  // namespace detail
}  // namespace math
}  // namespace operators
}  // namespace paddle

#endif /* HL_LSTM_OPS_CUH_ */