conv_bn_fuse_pass.cc 28.9 KB
Newer Older
S
Sylwester Fraczek 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/conv_bn_fuse_pass.h"
W
wanghuancoder 已提交
16

S
Sylwester Fraczek 已提交
17
#include <string>
W
wanghuancoder 已提交
18

19
#include "paddle/fluid/framework/convert_utils.h"
P
Pei Yang 已提交
20
#include "paddle/fluid/framework/op_version_registry.h"
S
Sylwester Fraczek 已提交
21 22
#include "paddle/fluid/platform/enforce.h"

23
namespace phi {
24
class DenseTensor;
25
}  // namespace phi
26

W
wanghuancoder 已提交
27 28 29 30 31 32
namespace paddle {
namespace framework {
class Scope;
}  // namespace framework
}  // namespace paddle

S
Sylwester Fraczek 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
namespace paddle {
namespace framework {
namespace ir {

#define GET_CONV_BN_NODES(pattern_name)                                      \
  /* OPERATORS */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name);                       \
  GET_IR_NODE_FROM_SUBGRAPH(batch_norm, batch_norm, pattern_name);           \
  /* CONV inputs */                                                          \
  GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name);         \
  /* CONV outputs */                                                         \
  GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name);               \
  /* BN inputs */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(bn_scale, bn_scale, pattern_name);               \
  GET_IR_NODE_FROM_SUBGRAPH(bn_bias, bn_bias, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean, bn_mean, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance, bn_variance, pattern_name);         \
  /* BN outputs */                                                           \
  GET_IR_NODE_FROM_SUBGRAPH(bn_out, bn_out, pattern_name); /* Out */         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean_out, bn_mean_out, pattern_name);         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance_out, bn_variance_out, pattern_name); \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name);     \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)

void recompute_bias_and_weights(const Scope* scope,
                                ir::Node* conv_weight,            //
                                const ir::Node& bn_scale,         //
                                const LoDTensor& bn_bias_tensor,  //
                                const ir::Node& bn_mean,          //
                                const ir::Node& bn_variance,      //
63
                                LoDTensor* eltwise_y_in_tensor,   //
64 65
                                float epsilon,
                                const std::string& conv_type) {
66 67 68 69 70 71 72
  using EigenVectorArrayMap =
      Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
  using ConstEigenVectorArrayMap =
      Eigen::Map<const Eigen::Array<float, Eigen::Dynamic, 1>>;
  using EigenMatrixArrayMap = Eigen::Map<
      Eigen::Array<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;

S
Sylwester Fraczek 已提交
73
  // Re-compute bias of conv2d from BN
74
  PADDLE_ENFORCE_EQ(
75 76
      eltwise_y_in_tensor->dims(),
      bn_bias_tensor.dims(),
77 78 79 80
      platform::errors::InvalidArgument("Tensor elementwise y(%d) and batch "
                                        "norm bias(%d) must have same dims.",
                                        eltwise_y_in_tensor->dims().size(),
                                        bn_bias_tensor.dims().size()));
S
Sylwester Fraczek 已提交
81 82 83 84 85 86

  auto* scale_tensor = scope->FindVar(bn_scale.Name())->GetMutable<LoDTensor>();
  auto* variance_tensor =
      scope->FindVar(bn_variance.Name())->GetMutable<LoDTensor>();
  auto* mean_tensor = scope->FindVar(bn_mean.Name())->GetMutable<LoDTensor>();

87 88
  ConstEigenVectorArrayMap scale_array(
      scale_tensor->data<float>(), scale_tensor->numel(), 1);
89 90
  EigenVectorArrayMap variance_array(
      variance_tensor->mutable_data<float>(platform::CPUPlace()),
91 92 93 94 95 96
      variance_tensor->numel(),
      1);
  ConstEigenVectorArrayMap mean_array(
      mean_tensor->data<float>(), mean_tensor->numel(), 1);
  ConstEigenVectorArrayMap bn_bias_array(
      bn_bias_tensor.data<float>(), bn_bias_tensor.numel(), 1);
S
Sylwester Fraczek 已提交
97

98 99 100 101
  // variance will not be used anymore, so make it std_array and then tmp_array
  variance_array += epsilon;
  variance_array = variance_array.sqrt();
  variance_array = scale_array / variance_array;
102
  for (int i = 0; i < variance_tensor->numel(); i++) {
103 104
    PADDLE_ENFORCE_EQ(std::isfinite(variance_array[i]),
                      true,
105 106 107 108 109
                      platform::errors::InvalidArgument(
                          "The inverse of Fused batch norm variance "
                          "should be finite. Found nonfinite values! "
                          "Please check %s ",
                          bn_variance.Name()));
110
  }
111 112
  EigenVectorArrayMap eltwise_y_in_array(
      eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
113 114
      eltwise_y_in_tensor->numel(),
      1);
115

116 117
  eltwise_y_in_array =
      ((eltwise_y_in_array - mean_array) * variance_array) + bn_bias_array;
118
  for (int i = 0; i < eltwise_y_in_tensor->numel(); i++) {
119 120
    PADDLE_ENFORCE_EQ(std::isfinite(eltwise_y_in_array[i]),
                      true,
121 122 123 124 125
                      platform::errors::InvalidArgument(
                          "Fused batch norm bias should be "
                          "finite. Found nonfinite values! "
                          "Please check %s and related variables.",
                          bn_variance.Name()));
126
  }
S
Sylwester Fraczek 已提交
127 128

  // Re-compute weight of conv2d from BN
129 130
  auto* weights = scope->FindVar(conv_weight->Name())->GetMutable<LoDTensor>();
  auto weights_shape = weights->dims();
131 132 133 134 135 136 137 138 139 140 141 142 143
  auto weights_data = weights->mutable_data<float>(platform::CPUPlace());

  // ConvTranspose weights are in IOHW format
  if (conv_type == "conv2d_transpose") {
    int kernel_size = weights_shape[2] * weights_shape[3];
    for (int i = 0; i < weights->numel();) {
      for (int j = 0; j < weights_shape[1]; ++j) {
        for (int k = 0; k < kernel_size; ++k, ++i) {
          weights_data[i] *= variance_array[j];
        }
      }
    }
  } else {
144
    auto weights_shape_2d = phi::flatten_to_2d(weights_shape, 1);
145

146 147
    EigenMatrixArrayMap weights_array_2d(
        weights_data, weights_shape_2d[0], weights_shape_2d[1]);
148

149 150
    weights_array_2d.colwise() *= variance_array;
  }
S
Sylwester Fraczek 已提交
151 152
}

W
Wangzheee 已提交
153 154 155 156 157 158 159 160 161
ConvBNFusePass::ConvBNFusePass() {
  AddOpCompat(OpCompat("conv2d"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
162
      .IsTensor()
W
Wangzheee 已提交
163 164 165
      .IsOptional()
      .End()
      .AddInput("ResidualData")
166
      .IsTensor()
W
Wangzheee 已提交
167 168 169 170 171 172
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("strides")
173
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
174 175
      .End()
      .AddAttr("paddings")
176
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
177 178 179 180 181 182 183 184 185
      .End()
      .AddAttr("padding_algorithm")
      .IsOptional()
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
      .End()
      .AddAttr("groups")
      .IsNumGE(1)
      .End()
      .AddAttr("dilations")
186
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
      .End()
      .AddAttr("data_format")
      .IsStringIn({"NCHW", "NHWC", "AnyLayout"})
      .End();

  AddOpCompat(OpCompat("batch_norm"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Scale")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .End()
      .AddInput("Mean")
      .IsTensor()
      .End()
      .AddInput("Variance")
      .IsTensor()
      .End()
      .AddOutput("MeanOut")
      .IsTensor()
      .End()
      .AddOutput("VarianceOut")
      .IsTensor()
      .End()
      .AddOutput("SavedMean")
      .IsTensor()
      .End()
      .AddOutput("SavedVariance")
      .IsTensor()
      .End()
      .AddOutput("Y")
      .IsTensor()
      .End()
223 224 225 226
      .AddOutput("ReserveSpace")
      .IsTensor()
      .IsOptional()
      .End()
W
Wangzheee 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
      .AddAttr("epsilon")
      .IsNumLE(0.001f)
      .IsNumGE(0.0f)
      .End();

  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsNumEQ(1)
      .End();
}

247
void ConvBNFusePass::ApplyImpl(ir::Graph* graph) const {
248 249
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
250
  FusePassBase::Init(name_scope_, graph);
S
Sylwester Fraczek 已提交
251 252

  auto* scope = param_scope();
253 254
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope cannot be nullptr."));
S
Sylwester Fraczek 已提交
255 256 257 258 259 260

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
261
          ->assert_is_op_input(conv_type(), "Input");
S
Sylwester Fraczek 已提交
262
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
263
  conv_bn_pattern(conv_input, conv_type(), false /*with_eltwise_add*/);
S
Sylwester Fraczek 已提交
264 265 266 267

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
W
Wangzheee 已提交
268 269 270 271
    if (!IsCompat(subgraph, g)) {
      LOG(WARNING) << "Pass in op compat failed.";
      return;
    }
272
    VLOG(4) << "handle " + conv_type() + "BN fuse";
S
Sylwester Fraczek 已提交
273 274 275
    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
W
Wojciech Uss 已提交
276 277
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,
    // bn_saved_variance
S
Sylwester Fraczek 已提交
278 279
    GET_CONV_BN_NODES(conv_bn_pattern);

W
Wojciech Uss 已提交
280 281 282
    // check if fuse can be done and if MKL-DNN should be used
    FuseOptions fuse_option = FindFuseOption(*conv, *batch_norm);
    if (fuse_option == DO_NOT_FUSE) {
283
      VLOG(3) << "do not perform " + conv_type() + " bn fuse";
W
Wojciech Uss 已提交
284 285 286
      return;
    }

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    // conv_weight fp32 --> fp16
    auto* conv_weight_tensor =
        scope->FindVar(conv_weight->Name())->GetMutable<LoDTensor>();
    auto tensor_type = conv_weight_tensor->dtype();

    if (tensor_type == paddle::experimental::DataType::FLOAT16) {
      framework::Tensor weight_float_tensor;
      weight_float_tensor.set_type(paddle::experimental::DataType::FLOAT32);
      weight_float_tensor.Resize(conv_weight_tensor->dims());
      auto* weight_float_data =
          weight_float_tensor.mutable_data<float>(platform::CPUPlace());
      auto* data =
          conv_weight_tensor->mutable_data<float16>(platform::CPUPlace());
      for (int i = 0; i < conv_weight_tensor->numel(); i++) {
        weight_float_data[i] = static_cast<float>(data[i]);
      }
      conv_weight_tensor->clear();
      paddle::framework::TensorCopySync(
          weight_float_tensor, platform::CPUPlace(), conv_weight_tensor);
    }

308 309 310 311
    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

S
Sylwester Fraczek 已提交
312 313
    // Create eltwise_y (conv bias) variable
    VarDesc eltwise_y_in_desc(
314
        patterns::PDNodeName("fuse_conv_bn", conv_type() + "_eltwise_y_in"));
315
    eltwise_y_in_desc.SetShape(phi::vectorize(bn_bias_tensor->dims()));
316 317
    eltwise_y_in_desc.SetDataType(
        framework::TransToProtoVarType(bn_bias_tensor->dtype()));
318
    eltwise_y_in_desc.SetLoDLevel(bn_bias->Var()->GetLoDLevel());
W
Wojciech Uss 已提交
319
    eltwise_y_in_desc.SetPersistable(true);
S
Sylwester Fraczek 已提交
320 321 322 323 324 325 326
    auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
    auto* eltwise_y_in_tensor =
        scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();

    // Initialize eltwise_y
    eltwise_y_in_tensor->Resize(bn_bias_tensor->dims());
    std::fill_n(eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
327 328
                eltwise_y_in_tensor->numel(),
                0.0f);
S
Sylwester Fraczek 已提交
329 330

    // update weights and biases
331
    float epsilon =
R
Ruibiao Chen 已提交
332
        PADDLE_GET_CONST(float, batch_norm->Op()->GetAttr("epsilon"));
333 334 335 336 337 338 339 340 341
    recompute_bias_and_weights(scope,
                               conv_weight,
                               *bn_scale,
                               *bn_bias_tensor,
                               *bn_mean,
                               *bn_variance,
                               eltwise_y_in_tensor,
                               epsilon,
                               conv_type());
S
Sylwester Fraczek 已提交
342

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    if (tensor_type == paddle::experimental::DataType::FLOAT16) {
      {
        framework::Tensor weight_float16_tensor;
        weight_float16_tensor.set_type(paddle::experimental::DataType::FLOAT16);
        weight_float16_tensor.Resize(conv_weight_tensor->dims());
        auto* weight_float16_data =
            weight_float16_tensor.mutable_data<float16>(platform::CPUPlace());
        auto* data =
            conv_weight_tensor->mutable_data<float>(platform::CPUPlace());
        for (int i = 0; i < conv_weight_tensor->numel(); i++) {
          weight_float16_data[i] = static_cast<float16>(data[i]);
        }
        conv_weight_tensor->clear();
        paddle::framework::TensorCopySync(
            weight_float16_tensor, platform::CPUPlace(), conv_weight_tensor);
      }

      {
        framework::Tensor eltwise_y_in_float16_tensor;
        eltwise_y_in_float16_tensor.set_type(
            paddle::experimental::DataType::FLOAT16);
        eltwise_y_in_float16_tensor.Resize(eltwise_y_in_tensor->dims());
        auto* eltwise_y_in_float16_data =
            eltwise_y_in_float16_tensor.mutable_data<float16>(
                platform::CPUPlace());
        auto* data =
            eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace());
        for (int i = 0; i < eltwise_y_in_tensor->numel(); i++) {
          eltwise_y_in_float16_data[i] = static_cast<float16>(data[i]);
        }
        eltwise_y_in_tensor->clear();
        paddle::framework::TensorCopySync(eltwise_y_in_float16_tensor,
                                          platform::CPUPlace(),
                                          eltwise_y_in_tensor);
      }
    }

W
Wojciech Uss 已提交
380 381 382 383
    // with MKL-DNN fuse conv+bn into conv with bias
    // without MKL-DNN fuse conv+bn into conv+elementwise_add
    if (fuse_option == FUSE_MKLDNN) {
      auto input_names = conv->Op()->InputNames();
384 385 386
      bool has_bias =
          std::find(input_names.begin(), input_names.end(), "Bias") !=
          input_names.end();
W
Wojciech Uss 已提交
387 388 389
      if (has_bias && conv->Op()->Input("Bias").size() > 0) {
        // reuse existing conv bias node
        auto conv_bias_names = conv->Op()->Input("Bias");
390
        PADDLE_ENFORCE_EQ(
391 392
            conv_bias_names.size(),
            1UL,
393
            platform::errors::InvalidArgument("Find input var Bais error."));
W
Wojciech Uss 已提交
394 395
        auto* conv_bias_var = scope->FindVar(conv_bias_names[0]);
        auto* conv_bias_tensor = conv_bias_var->GetMutable<LoDTensor>();
396
        PADDLE_ENFORCE_EQ(
397 398
            conv_bias_tensor->dims(),
            eltwise_y_in_tensor->dims(),
399 400 401 402 403
            platform::errors::InvalidArgument(
                "Tensor convolution bias(%d) and elementwise y(%d) "
                "must have same dims.",
                conv_bias_tensor->dims().size(),
                eltwise_y_in_tensor->dims().size()));
W
Wojciech Uss 已提交
404 405 406 407 408 409 410 411 412 413 414

        auto eigen_conv_bias = EigenVector<float>::From(*conv_bias_tensor);
        eigen_conv_bias += EigenVector<float>::From(*eltwise_y_in_tensor);
      } else {
        // add new conv_bias node
        conv->Op()->SetInput(
            "Bias", std::vector<std::string>({eltwise_y_in_node->Name()}));
        IR_NODE_LINK_TO(eltwise_y_in_node, conv);
      }
      conv->Op()->SetOutput("Output",
                            std::vector<std::string>({bn_out->Name()}));
W
Wangzheee 已提交
415 416 417 418
      if (!IsCompat(*conv->Op())) {
        LOG(WARNING) << "conv_bn fuse pass in out conv op compat failed.";
        return;
      }
419 420 421 422 423 424 425 426 427 428 429
      GraphSafeRemoveNodes(graph,
                           {conv_out,
                            bn_scale,
                            bn_bias,
                            bn_mean,
                            bn_variance,
                            batch_norm,
                            bn_mean_out,
                            bn_variance_out,
                            bn_saved_mean,
                            bn_saved_variance});
W
Wojciech Uss 已提交
430 431 432 433 434 435 436 437 438 439 440

      IR_NODE_LINK_TO(conv, bn_out);
      found_conv_bn_count++;
    } else {  // fuse_option == FUSE_NATIVE
      // create an elementwise add node.
      OpDesc desc;
      desc.SetInput("X", std::vector<std::string>({conv_out->Name()}));
      desc.SetInput("Y", std::vector<std::string>({eltwise_y_in_node->Name()}));
      desc.SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
      desc.SetType("elementwise_add");
      desc.SetAttr("axis", 1);
W
Wangzheee 已提交
441 442 443 444 445
      if (!IsCompat(desc)) {
        LOG(WARNING)
            << "conv_bn fuse pass in out elementwise_add op compat failed.";
        return;
      }
W
Wojciech Uss 已提交
446 447
      auto eltwise_op = g->CreateOpNode(&desc);  // OpDesc will be copied.

448 449 450 451 452 453 454 455 456 457
      GraphSafeRemoveNodes(graph,
                           {bn_scale,
                            bn_bias,
                            bn_mean,
                            bn_variance,
                            batch_norm,
                            bn_mean_out,
                            bn_variance_out,
                            bn_saved_mean,
                            bn_saved_variance});
W
Wojciech Uss 已提交
458 459 460 461 462 463

      IR_NODE_LINK_TO(conv_out, eltwise_op);
      IR_NODE_LINK_TO(eltwise_y_in_node, eltwise_op);
      IR_NODE_LINK_TO(eltwise_op, bn_out);
      found_conv_bn_count++;
    }
S
Sylwester Fraczek 已提交
464 465
  };

466
  gpd(graph, handler);
S
Sylwester Fraczek 已提交
467 468 469 470

  AddStatis(found_conv_bn_count);
}

W
Wangzheee 已提交
471 472 473 474 475 476 477 478 479
ConvEltwiseAddBNFusePass::ConvEltwiseAddBNFusePass() {
  AddOpCompat(OpCompat("conv2d"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
480
      .IsTensor()
W
Wangzheee 已提交
481 482 483
      .IsOptional()
      .End()
      .AddInput("ResidualData")
484
      .IsTensor()
W
Wangzheee 已提交
485 486 487 488 489 490
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("strides")
491
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
492 493
      .End()
      .AddAttr("paddings")
494
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
495 496 497 498 499 500 501 502 503
      .End()
      .AddAttr("padding_algorithm")
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
      .IsOptional()
      .End()
      .AddAttr("groups")
      .IsNumGE(1)
      .End()
      .AddAttr("dilations")
504
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
      .End()
      .AddAttr("data_format")
      .IsStringIn({"NCHW", "NHWC", "AnyLayout"})
      .End();

  AddOpCompat(OpCompat("batch_norm"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Scale")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .End()
      .AddInput("Mean")
      .IsTensor()
      .End()
      .AddInput("Variance")
      .IsTensor()
      .End()
      .AddOutput("MeanOut")
      .IsTensor()
      .End()
      .AddOutput("VarianceOut")
      .IsTensor()
      .End()
      .AddOutput("SavedMean")
      .IsTensor()
      .End()
      .AddOutput("SavedVariance")
      .IsTensor()
      .End()
      .AddOutput("Y")
      .IsTensor()
      .End()
541 542 543 544
      .AddOutput("ReserveSpace")
      .IsTensor()
      .IsOptional()
      .End()
W
Wangzheee 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
      .AddAttr("epsilon")
      .IsNumLE(0.001f)
      .IsNumGE(0.0f)
      .End();

  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsNumEQ(1)
      .End();
}

565
void ConvEltwiseAddBNFusePass::ApplyImpl(ir::Graph* graph) const {
566 567
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
568
  FusePassBase::Init(name_scope_, graph);
S
Sylwester Fraczek 已提交
569 570

  auto* scope = param_scope();
571 572
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope cannot be nullptr."));
S
Sylwester Fraczek 已提交
573 574 575 576 577 578

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
579
          ->assert_is_op_input(conv_type(), "Input");
S
Sylwester Fraczek 已提交
580
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
581
  conv_bn_pattern(conv_input, conv_type(), true /*with_eltwise_add*/);
S
Sylwester Fraczek 已提交
582 583 584 585

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
W
Wangzheee 已提交
586 587 588 589
    if (!IsCompat(subgraph, g)) {
      LOG(WARNING) << "Pass in op compat failed.";
      return;
    }
590
    VLOG(4) << "handle " + conv_type() + "BN fuse";
S
Sylwester Fraczek 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,bn_saved_variance
    GET_CONV_BN_NODES(conv_bn_pattern);
    // OPERATORS
    GET_IR_NODE_FROM_SUBGRAPH(eltwise, eltwise, conv_bn_pattern);
    // BIAS inputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_y_in, eltwise_y_in, conv_bn_pattern);
    // BIAS outputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_out, eltwise_out, conv_bn_pattern);

    // Get eltwise_y (conv bias) variable
    auto* eltwise_y_in_tensor =
        scope->FindVar(eltwise_y_in->Name())->GetMutable<LoDTensor>();

    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

    // update weights and biases
612
    float epsilon =
R
Ruibiao Chen 已提交
613
        PADDLE_GET_CONST(float, batch_norm->Op()->GetAttr("epsilon"));
614 615 616 617 618 619 620 621

    // if bias is an input to other ops as well then we cannot overwrite it
    // so we create separate elementwise Y in nodes
    if (eltwise_y_in->outputs.size() > 1) {
      // Make a copy of eltwise Y input tensor
      // Create eltwise_y (conv bias) variable
      VarDesc eltwise_y_in_desc(patterns::PDNodeName(
          name_scope_, "eltwise_y_in" + std::to_string(found_conv_bn_count)));
622
      eltwise_y_in_desc.SetShape(phi::vectorize(eltwise_y_in_tensor->dims()));
623 624
      eltwise_y_in_desc.SetDataType(
          framework::TransToProtoVarType(eltwise_y_in_tensor->dtype()));
625 626 627 628 629 630 631
      eltwise_y_in_desc.SetLoDLevel(eltwise_y_in->Var()->GetLoDLevel());
      eltwise_y_in_desc.SetPersistable(true);
      auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
      auto* eltwise_y_in_tensor_ex =
          scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();

      // Initialize eltwise_y
632 633 634 635 636 637 638 639 640 641 642 643
      TensorCopy(
          *eltwise_y_in_tensor, platform::CPUPlace(), eltwise_y_in_tensor_ex);

      recompute_bias_and_weights(scope,
                                 conv_weight,
                                 *bn_scale,
                                 *bn_bias_tensor,
                                 *bn_mean,
                                 *bn_variance,
                                 eltwise_y_in_tensor_ex,
                                 epsilon,
                                 conv_type());
644 645 646 647 648 649 650 651 652 653 654 655 656 657
      // Set new var
      eltwise->Op()->RenameInput(eltwise_y_in->Name(),
                                 eltwise_y_in_node->Name());
      // Link new bias node to eltwise
      IR_NODE_LINK_TO(eltwise_y_in_node, eltwise);
      // unlink original bias from eltwise_op
      eltwise_y_in->outputs.erase(
          std::remove_if(eltwise_y_in->outputs.begin(),
                         eltwise_y_in->outputs.end(),
                         [&](Node*& n) {
                           return n->id() == eltwise->id() ? true : false;
                         }),
          eltwise_y_in->outputs.end());
    } else {
658 659 660 661 662 663 664 665 666
      recompute_bias_and_weights(scope,
                                 conv_weight,
                                 *bn_scale,
                                 *bn_bias_tensor,
                                 *bn_mean,
                                 *bn_variance,
                                 eltwise_y_in_tensor,
                                 epsilon,
                                 conv_type());
667
    }
S
Sylwester Fraczek 已提交
668 669 670 671

    // Update the elementwise_add node
    eltwise->Op()->SetAttr("axis", 1);
    eltwise->Op()->SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
W
Wangzheee 已提交
672 673 674 675 676
    if (!IsCompat(*eltwise->Op())) {
      LOG(WARNING)
          << "conv_eltwise_bn fuse pass in out eltwise op compat failed.";
      return;
    }
677 678 679 680 681 682 683 684 685 686 687
    GraphSafeRemoveNodes(graph,
                         {bn_scale,
                          bn_bias,
                          bn_mean,
                          bn_variance,
                          batch_norm,
                          bn_mean_out,
                          bn_variance_out,
                          bn_saved_mean,
                          bn_saved_variance,
                          eltwise_out});
S
Sylwester Fraczek 已提交
688 689 690 691 692 693

    IR_NODE_LINK_TO(eltwise, bn_out);

    found_conv_bn_count++;
  };

694
  gpd(graph, handler);
S
Sylwester Fraczek 已提交
695 696 697 698

  AddStatis(found_conv_bn_count);
}

W
Wangzheee 已提交
699 700 701 702 703 704 705 706 707
ConvTransposeBNFusePass::ConvTransposeBNFusePass() {
  AddOpCompat(OpCompat("conv2d_transpose"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
708
      .IsTensor()
W
Wangzheee 已提交
709 710 711 712 713
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
714 715 716 717 718 719 720 721 722
      .AddAttr("output_padding")
      .IsType<std::vector<int>>()
      .IsOptional()
      .End()
      .AddAttr("output_size")
      .IsType<std::vector<int>>()
      .IsOptional()
      .End()
      .AddAttr("groups")
723
      .IsNumEQ(1)
724 725 726 727
      .End()
      .AddAttr("dilations")
      .IsType<std::vector<int>>()
      .End()
W
Wangzheee 已提交
728
      .AddAttr("strides")
729
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
730 731
      .End()
      .AddAttr("paddings")
732
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
733 734
      .End()
      .AddAttr("padding_algorithm")
735
      .IsOptional()
W
Wangzheee 已提交
736
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
737 738
      .End()
      .AddAttr("data_format")
739
      .IsStringIn({"NCHW", "AnyLayout"})
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
      .End();
}

ConvTransposeEltwiseAddBNFusePass::ConvTransposeEltwiseAddBNFusePass() {
  AddOpCompat(OpCompat("conv2d_transpose"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("output_padding")
      .IsType<std::vector<int>>()
      .IsOptional()
      .End()
      .AddAttr("output_size")
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
764 765 766
      .IsOptional()
      .End()
      .AddAttr("groups")
767
      .IsNumEQ(1)
W
Wangzheee 已提交
768 769
      .End()
      .AddAttr("dilations")
770 771 772 773 774 775 776 777 778
      .IsType<std::vector<int>>()
      .End()
      .AddAttr("strides")
      .IsType<std::vector<int>>()
      .End()
      .AddAttr("paddings")
      .IsType<std::vector<int>>()
      .End()
      .AddAttr("padding_algorithm")
779
      .IsOptional()
780
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
W
Wangzheee 已提交
781 782
      .End()
      .AddAttr("data_format")
783
      .IsStringIn({"NCHW", "AnyLayout"})
W
Wangzheee 已提交
784 785 786
      .End();
}

787 788
DepthwiseConvBNFusePass::DepthwiseConvBNFusePass() {
  AddOpCompat(OpCompat("depthwise_conv2d"))
W
Wangzheee 已提交
789 790 791 792 793 794 795
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
796 797 798 799 800
      .IsTensor()
      .IsOptional()
      .End()
      .AddInput("ResidualData")
      .IsTensor()
W
Wangzheee 已提交
801 802 803 804 805 806
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("strides")
807
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
808 809
      .End()
      .AddAttr("paddings")
810
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
811 812 813
      .End()
      .AddAttr("padding_algorithm")
      .IsOptional()
814
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
W
Wangzheee 已提交
815 816 817 818 819
      .End()
      .AddAttr("groups")
      .IsNumGE(1)
      .End()
      .AddAttr("dilations")
820
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
821 822 823 824 825 826
      .End()
      .AddAttr("data_format")
      .IsStringIn({"NCHW", "NHWC", "AnyLayout"})
      .End();
}

S
Sylwester Fraczek 已提交
827 828 829 830 831 832 833
}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(conv_bn_fuse_pass, paddle::framework::ir::ConvBNFusePass);
REGISTER_PASS(conv_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::ConvEltwiseAddBNFusePass);
834 835 836 837
REGISTER_PASS(conv_transpose_bn_fuse_pass,
              paddle::framework::ir::ConvTransposeBNFusePass);
REGISTER_PASS(conv_transpose_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::ConvTransposeEltwiseAddBNFusePass);
838 839 840 841
REGISTER_PASS(depthwise_conv_bn_fuse_pass,
              paddle::framework::ir::DepthwiseConvBNFusePass);
REGISTER_PASS(depthwise_conv_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::DepthwiseConvEltwiseAddBNFusePass);
P
Pei Yang 已提交
842 843 844
REGISTER_PASS_CAPABILITY(conv_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
845
            .LE("conv2d", 1)
P
Pei Yang 已提交
846 847 848 849
            .EQ("batch_norm", 0));
REGISTER_PASS_CAPABILITY(conv_eltwiseadd_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
850
            .LE("conv2d", 1)
851
            .LE("elementwise_add", 1)
P
Pei Yang 已提交
852
            .EQ("batch_norm", 0));
853 854 855 856 857 858
REGISTER_PASS_CAPABILITY(conv_transpose_eltwiseadd_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .LE("conv2d_transpose", 2)
            .LE("elementwise_add", 1)
            .EQ("batch_norm", 0));
859 860 861 862 863
REGISTER_PASS_CAPABILITY(conv_transpose_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .LE("conv2d_transpose", 2)
            .EQ("batch_norm", 0));