test_LeViT.cc 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "test_suite.h"  // NOLINT
16 17 18
#ifdef PADDLE_WITH_GPU
#include <cuda_runtime.h>
#endif
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

DEFINE_string(modeldir, "", "Directory of the inference model.");

namespace paddle_infer {

paddle::test::Record PrepareInput(int batch_size) {
  // init input data
  int channel = 3;
  int width = 224;
  int height = 224;
  paddle::test::Record image_Record;
  int input_num = batch_size * channel * width * height;
  std::vector<float> input_data(input_num, 1);
  image_Record.data = input_data;
  image_Record.shape = std::vector<int>{batch_size, channel, width, height};
  image_Record.type = paddle::PaddleDType::FLOAT32;
  return image_Record;
}

38
TEST(gpu_tester_LeViT, analysis_gpu_bz1) {
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  // init input data
  std::map<std::string, paddle::test::Record> my_input_data_map;
  my_input_data_map["x"] = PrepareInput(1);
  // init output data
  std::map<std::string, paddle::test::Record> infer_output_data,
      truth_output_data;
  // prepare groudtruth config
  paddle_infer::Config config, config_no_ir;
  config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                        FLAGS_modeldir + "/inference.pdiparams");
  config_no_ir.SwitchIrOptim(false);
  // prepare inference config
  config.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                  FLAGS_modeldir + "/inference.pdiparams");
  // get groudtruth by disbale ir
  paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1);
55 56
  SingleThreadPrediction(
      pred_pool_no_ir.Retrive(0), &my_input_data_map, &truth_output_data, 1);
57 58
  // get infer results
  paddle_infer::services::PredictorPool pred_pool(config, 1);
59 60
  SingleThreadPrediction(
      pred_pool.Retrive(0), &my_input_data_map, &infer_output_data);
61 62 63 64 65
  // check outputs
  CompareRecord(&truth_output_data, &infer_output_data);
  std::cout << "finish test" << std::endl;
}

66
TEST(tensorrt_tester_LeViT, trt_fp32_bz2) {
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  // init input data
  std::map<std::string, paddle::test::Record> my_input_data_map;
  my_input_data_map["x"] = PrepareInput(2);
  // init output data
  std::map<std::string, paddle::test::Record> infer_output_data,
      truth_output_data;
  // prepare groudtruth config
  paddle_infer::Config config, config_no_ir;
  config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                        FLAGS_modeldir + "/inference.pdiparams");
  config_no_ir.SwitchIrOptim(false);
  // prepare inference config
  config.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                  FLAGS_modeldir + "/inference.pdiparams");
  config.EnableUseGpu(100, 0);
  config.EnableTensorRtEngine(
83
      1 << 20, 2, 50, paddle_infer::PrecisionType::kFloat32, false, false);
84 85
  // get groudtruth by disbale ir
  paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1);
86 87
  SingleThreadPrediction(
      pred_pool_no_ir.Retrive(0), &my_input_data_map, &truth_output_data, 1);
88 89
  // get infer results
  paddle_infer::services::PredictorPool pred_pool(config, 1);
90 91
  SingleThreadPrediction(
      pred_pool.Retrive(0), &my_input_data_map, &infer_output_data);
92 93 94 95 96
  // check outputs
  CompareRecord(&truth_output_data, &infer_output_data);
  std::cout << "finish test" << std::endl;
}

97
TEST(tensorrt_tester_LeViT, serial_diff_batch_trt_fp32) {
98 99 100 101 102 103 104 105 106 107 108
  int max_batch_size = 5;
  // prepare groudtruth config
  paddle_infer::Config config, config_no_ir;
  config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                        FLAGS_modeldir + "/inference.pdiparams");
  config_no_ir.SwitchIrOptim(false);
  paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1);
  // prepare inference config
  config.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                  FLAGS_modeldir + "/inference.pdiparams");
  config.EnableUseGpu(100, 0);
109 110 111 112 113
  config.EnableTensorRtEngine(1 << 20,
                              max_batch_size,
                              50,
                              paddle_infer::PrecisionType::kFloat32,
                              false,
114 115 116 117 118 119 120 121 122 123 124
                              false);
  paddle_infer::services::PredictorPool pred_pool(config, 1);

  for (int i = 1; i < max_batch_size; i++) {
    // init input data
    std::map<std::string, paddle::test::Record> my_input_data_map;
    my_input_data_map["x"] = PrepareInput(i);
    // init output data
    std::map<std::string, paddle::test::Record> infer_output_data,
        truth_output_data;
    // get groudtruth by disbale ir
125 126
    SingleThreadPrediction(
        pred_pool_no_ir.Retrive(0), &my_input_data_map, &truth_output_data, 1);
127
    // get infer results
128 129
    SingleThreadPrediction(
        pred_pool.Retrive(0), &my_input_data_map, &infer_output_data);
130 131 132 133 134 135
    // check outputs
    CompareRecord(&truth_output_data, &infer_output_data);
  }
  std::cout << "finish test" << std::endl;
}

136
TEST(tensorrt_tester_LeViT, multi_thread4_trt_fp32_bz2) {
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
  int thread_num = 4;
  // init input data
  std::map<std::string, paddle::test::Record> my_input_data_map;
  my_input_data_map["x"] = PrepareInput(2);
  // init output data
  std::map<std::string, paddle::test::Record> infer_output_data,
      truth_output_data;
  // prepare groudtruth config
  paddle_infer::Config config, config_no_ir;
  config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                        FLAGS_modeldir + "/inference.pdiparams");
  config_no_ir.SwitchIrOptim(false);
  // prepare inference config
  config.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                  FLAGS_modeldir + "/inference.pdiparams");
  config.EnableUseGpu(100, 0);
  config.EnableTensorRtEngine(
154
      1 << 20, 2, 50, paddle_infer::PrecisionType::kFloat32, false, false);
155 156
  // get groudtruth by disbale ir
  paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1);
157 158
  SingleThreadPrediction(
      pred_pool_no_ir.Retrive(0), &my_input_data_map, &truth_output_data, 1);
159 160 161 162 163 164

  // get infer results from multi threads
  std::vector<std::thread> threads;
  services::PredictorPool pred_pool(config, thread_num);
  for (int i = 0; i < thread_num; ++i) {
    threads.emplace_back(paddle::test::SingleThreadPrediction,
165 166 167 168
                         pred_pool.Retrive(i),
                         &my_input_data_map,
                         &infer_output_data,
                         10);
169 170 171 172 173 174 175 176 177 178 179 180
  }

  // thread join & check outputs
  for (int i = 0; i < thread_num; ++i) {
    LOG(INFO) << "join tid : " << i;
    threads[i].join();
    CompareRecord(&truth_output_data, &infer_output_data);
  }

  std::cout << "finish multi-thread test" << std::endl;
}

181
#ifdef PADDLE_WITH_GPU
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
TEST(tensorrt_tester_LeViT, multi_stream_thread4_trt_fp32_bz2) {
  int thread_num = 4;

  // init stream
  std::vector<cudaStream_t> streams(thread_num);
  for (size_t i = 0; i < thread_num; ++i) {
    cudaStreamCreate(&streams[i]);
  }

  // init input data
  std::map<std::string, paddle::test::Record> my_input_data_map;
  my_input_data_map["x"] = PrepareInput(2);
  // init output data
  std::map<std::string, paddle::test::Record> infer_output_data,
      truth_output_data;
  // prepare groudtruth config
  paddle_infer::Config config, config_no_ir;
  config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                        FLAGS_modeldir + "/inference.pdiparams");
  config_no_ir.SwitchIrOptim(false);
  // prepare inference config
  config.SetModel(FLAGS_modeldir + "/inference.pdmodel",
                  FLAGS_modeldir + "/inference.pdiparams");
  config.EnableUseGpu(100, 0);
  config.EnableTensorRtEngine(
      1 << 20, 2, 50, paddle_infer::PrecisionType::kFloat32, false, false);
  // get groudtruth by disbale ir

  paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1);
  SingleThreadPrediction(
      pred_pool_no_ir.Retrive(0), &my_input_data_map, &truth_output_data, 1);

  // get infer results from multi threads
  std::vector<std::thread> threads;
  config.SetExecStream(streams[0]);
  config.pass_builder()->DeletePass("add_support_int8_pass");
  auto main_predictor = CreatePredictor(config);
  std::vector<decltype(main_predictor)> predictors;
  for (size_t i = 0; i < thread_num - 1; ++i) {
    predictors.push_back(std::move(main_predictor->Clone(streams[i + 1])));
    LOG(INFO) << "predictors[" << i << "] stream is "
              << predictors[i]->GetExecStream();
  }
  predictors.push_back(std::move(main_predictor));
  LOG(INFO) << "predictors[" << thread_num - 1 << "] stream is "
            << predictors[thread_num - 1]->GetExecStream();
  for (int i = 0; i < thread_num; ++i) {
    threads.emplace_back(paddle::test::SingleThreadPrediction,
                         predictors[i].get(),
                         &my_input_data_map,
                         &infer_output_data,
                         10);
  }

  // thread join & check outputs
  for (int i = 0; i < thread_num; ++i) {
    LOG(INFO) << "join tid : " << i;
    threads[i].join();
    CompareRecord(&truth_output_data, &infer_output_data);
  }

  std::cout << "finish multi-thread test" << std::endl;
}
245 246
#endif

247 248 249 250
}  // namespace paddle_infer

int main(int argc, char** argv) {
  ::testing::InitGoogleTest(&argc, argv);
251
  ::GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
252 253
  return RUN_ALL_TESTS();
}