MKLDNNPoolLayer.cpp 9.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MKLDNNPoolLayer.h"
16
#include "paddle/math/MathUtils.h"
T
tensor-tang 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include "paddle/utils/Logging.h"

using namespace mkldnn;  // NOLINT
typedef memory::format format;

namespace paddle {

REGISTER_LAYER(mkldnn_pool, MKLDNNPoolLayer);

bool MKLDNNPoolLayer::init(const LayerMap& layerMap,
                           const ParameterMap& parameterMap) {
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
    return false;
  }

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
  /* the size of inputs for pool-layer is 1 */
  CHECK_EQ(config_.inputs_size(), 1);
  const PoolConfig& conf = config_.inputs(0).pool_conf();
  ic_ = conf.channels();
  ih_ = conf.img_size_y();
  iw_ = conf.img_size();
  oc_ = ic_;
  oh_ = conf.output_y();
  ow_ = conf.output_x();
  fh_ = conf.size_y();
  fw_ = conf.size_x();
  ph_ = conf.padding_y();
  pw_ = conf.padding();
  sh_ = conf.stride_y();
  sw_ = conf.stride();

  const std::string& type = conf.pool_type();
  if (type == "max-projection") {
    poolAlgo_ = algorithm::pooling_max;
  } else if (type == "avg-projection") {
52 53
    // paddle only use exclude_padding
    poolAlgo_ = algorithm::pooling_avg_exclude_padding;
54 55 56
  } else {
    LOG(FATAL) << "unknow pooling type!";
  }
T
tensor-tang 已提交
57 58 59 60 61 62
  return true;
}

void MKLDNNPoolLayer::reshape(
    int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) {
  reshapeInput(bs, ih, iw);
63 64 65
  // ic_ and oc can not be changed
  CHECK_EQ(inputElemenCnt_ / bs / ih / iw, (size_t)ic)
      << "Input channel can not be changed";
T
tensor-tang 已提交
66 67

  // cal output sizes
68 69 70
  // paddle used false caffeMode for pooling
  oh = outputSize(ih, fh_, ph_, sh_, false);
  ow = outputSize(iw, fw_, pw_, sw_, false);
T
tensor-tang 已提交
71
  reshapeOutput(oh, ow);
72

T
tensor-tang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  resizeOutput(bs, oc * oh * ow);

  printSizeInfo();
}

void MKLDNNPoolLayer::resetFwd(std::vector<primitive>& pipeline,
                               MKLDNNMatrixPtr& in,
                               MKLDNNMatrixPtr& wgt,
                               MKLDNNMatrixPtr& bias,
                               MKLDNNMatrixPtr& out) {
  resetFwdBuffers(in, out);

  resetFwdPD(fwdPD_, in, out);

  resetFwdPipeline(pipeline, fwdPD_, in, out);

  printValueFormatFlow();
}

void MKLDNNPoolLayer::resetBwd(std::vector<primitive>& pipeline,
                               MKLDNNMatrixPtr& in,
                               MKLDNNMatrixPtr& wgt,
                               MKLDNNMatrixPtr& bias,
                               MKLDNNMatrixPtr& out) {
  std::shared_ptr<pool_bwd::primitive_desc> pd;

  resetBwdBuffers(in, out);

  resetBwdPD(pd, in, out);

  resetBwdPipeline(pipeline, pd, in, out);

  printGradFormatFlow();
}

void MKLDNNPoolLayer::updateInputData() {
  inVal_->setData(getInputValue(0, CPU_DEVICE)->getData());
}

void MKLDNNPoolLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
                                      MKLDNNMatrixPtr& out) {
  resetInValue(in);
115

T
tensor-tang 已提交
116 117 118
  resetOutValue(out);
}

119 120 121 122 123 124 125 126 127 128 129 130
void MKLDNNPoolLayer::resetInValue(MKLDNNMatrixPtr& in) {
  if (inputIsOnlyMKLDNN()) {
    const MatrixPtr& dnnIn = getInputValue(0);
    in = std::dynamic_pointer_cast<MKLDNNMatrix>(dnnIn);
    CHECK(in) << "Input should be MKLDNNMatrix";
  } else {
    CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet";
    const MatrixPtr& cpuIn = getInputValue(0, CPU_DEVICE);
    in = MKLDNNMatrix::create(
        cpuIn, {bs_, ic_, ih_, iw_}, format::nchw, engine_);
  }
}
T
tensor-tang 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144
void MKLDNNPoolLayer::resetOutValue(MKLDNNMatrixPtr& out) {
  CHECK(inVal_) << "Should reset input value first";
  memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
  out = MKLDNNMatrix::create(
      output_.value, outDims, inVal_->getFormat(), engine_);

  // create reorder if output value has cpu device and pd do not match
  cpuOutVal_ = nullptr;
  cvtOutVal_ = nullptr;
  if (!outputIsOnlyMKLDNN()) {
    const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value;
    cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_);
    if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
145
      out = MKLDNNMatrix::create(nullptr, out->getPrimitiveDesc());
146 147 148
      cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_);
      CHECK(cvtOutVal_) << "should not be emptry";
    } else {
149
      cpuOut->setData(output_.value->getData());
150 151
      cpuOutVal_ = out;
    }
152 153
    output_.value = std::dynamic_pointer_cast<Matrix>(cpuOutVal_);
    return;
154
  }
155
  output_.value = std::dynamic_pointer_cast<Matrix>(outVal_);
156
}
T
tensor-tang 已提交
157 158 159

void MKLDNNPoolLayer::resetFwdPD(std::shared_ptr<pool_fwd::primitive_desc>& pd,
                                 MKLDNNMatrixPtr in,
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
                                 MKLDNNMatrixPtr out) {
  memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
  memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
  memory::dims kernels = memory::dims{fh_, fw_};
  memory::dims strides = memory::dims{sh_, sw_};
  memory::dims padL = memory::dims{ph_, pw_};
  memory::dims padR = getPaddingR();
  padding_kind padKind = padding_kind::zero;
  prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
                                        : prop_kind::forward_training;
  auto fwdDesc = pool_fwd::desc(pk,
                                poolAlgo_,
                                in->getMemoryDesc(),
                                out->getMemoryDesc(),
                                strides,
                                kernels,
                                padL,
                                padR,
                                padKind);
  pd.reset(new pool_fwd::primitive_desc(fwdDesc, engine_));

  // prepare workspace if necessary
  workspace_ =
      (passType_ != PASS_TEST && poolAlgo_ == algorithm::pooling_max)
          ? std::make_shared<memory>(memory(pd->workspace_primitive_desc()))
          : nullptr;
}
T
tensor-tang 已提交
187 188

void MKLDNNPoolLayer::resetFwdPipeline(
189
    std::vector<primitive>& pipeline,
T
tensor-tang 已提交
190 191
    std::shared_ptr<pool_fwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
192 193 194 195 196 197 198 199 200 201
    MKLDNNMatrixPtr& out) {
  fwd_ = workspace_
             ? std::make_shared<pool_fwd>(pool_fwd(*pd, *in, *out, *workspace_))
             : std::make_shared<pool_fwd>(pool_fwd(*pd, *in, *out));
  pipeline.push_back(*fwd_);

  if (cvtOutVal_) {
    pipeline.push_back(*cvtOutVal_);
  }
}
T
tensor-tang 已提交
202 203 204 205

void MKLDNNPoolLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
                                      MKLDNNMatrixPtr& out) {
  resetOutGrad(out);
206

T
tensor-tang 已提交
207 208
  resetInGrad(in);
}
209 210 211
void MKLDNNPoolLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
  cpuOutGrad_ = nullptr;
  cvtOutGrad_ = nullptr;
T
tensor-tang 已提交
212 213 214 215
  CHECK(outVal_);
  if (outputIsOnlyMKLDNN()) {
    MKLDNNLayer::resetOutGrad(out, outVal_->getPrimitiveDesc());
  } else {
216
    const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad;
217 218 219
    // always share the same grad data of CPU output
    // then the activation can get the right grad from output_.grad
    output_.grad->setData(cpuOut->getData());
220 221
    cpuOutGrad_ = MKLDNNMatrix::create(
        cpuOut, memory::dims{bs_, oc_, oh_, ow_}, format::nchw, engine_);
T
tensor-tang 已提交
222
    if (cpuOutGrad_->getPrimitiveDesc() != outVal_->getPrimitiveDesc()) {
223
      out = MKLDNNMatrix::create(nullptr, outVal_->getPrimitiveDesc());
224 225 226 227 228 229 230
      cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out);
      CHECK(cvtOutGrad_) << "should not be emptry";
    } else {
      out = cpuOutGrad_;
    }
  }
}
T
tensor-tang 已提交
231

232 233
void MKLDNNPoolLayer::resetInGrad(MKLDNNMatrixPtr& in) {
  in = nullptr;
T
tensor-tang 已提交
234
  if (inputLayers_[0]->getOutput().grad == nullptr) {
235 236 237
    return;
  }
  CHECK(inVal_);
T
tensor-tang 已提交
238
  MKLDNNLayer::resetInGrad(in, inVal_->getPrimitiveDesc());
239
}
T
tensor-tang 已提交
240 241 242

void MKLDNNPoolLayer::resetBwdPD(std::shared_ptr<pool_bwd::primitive_desc>& pd,
                                 MKLDNNMatrixPtr& in,
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
                                 MKLDNNMatrixPtr& out) {
  memory::dims kernels = memory::dims{fh_, fw_};
  memory::dims strides = memory::dims{sh_, sw_};
  memory::dims padL = memory::dims{ph_, pw_};
  memory::dims padR = getPaddingR();
  CHECK(in);
  CHECK(out);
  auto bwdDesc = pool_bwd::desc(poolAlgo_,
                                in->getMemoryDesc(),
                                out->getMemoryDesc(),
                                strides,
                                kernels,
                                padL,
                                padR,
                                padding_kind::zero);
  pd.reset(new pool_bwd::primitive_desc(bwdDesc, engine_, *fwdPD_));
}
T
tensor-tang 已提交
260 261

void MKLDNNPoolLayer::resetBwdPipeline(
262
    std::vector<primitive>& pipeline,
T
tensor-tang 已提交
263 264
    std::shared_ptr<pool_bwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
265 266 267 268 269 270 271 272 273 274 275
    MKLDNNMatrixPtr& out) {
  if (cvtOutGrad_) {
    pipeline.push_back(*cvtOutGrad_);
  }

  bwdData_ =
      workspace_
          ? std::make_shared<pool_bwd>(pool_bwd(*pd, *out, *workspace_, *in))
          : std::make_shared<pool_bwd>(pool_bwd(*pd, *out, *in));
  pipeline.push_back(*bwdData_);
}
T
tensor-tang 已提交
276 277

}  // namespace paddle