mlu_baseop.cc 213.2 KB
Newer Older
F
fwenguang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/mlu/mlu_baseop.h"
16

17
#include "paddle/fluid/framework/convert_utils.h"
18
#include "paddle/fluid/framework/data_type.h"
F
fwenguang 已提交
19
#include "paddle/fluid/framework/framework.pb.h"
20
#include "paddle/fluid/framework/operator.h"
F
fwenguang 已提交
21 22 23 24

namespace paddle {
namespace operators {

25 26 27 28
cnnlCastDataType_t GetCastDataType(const VT::Type& src_type,
                                   const VT::Type& dst_type) {
  cnnlCastDataType_t cast_type = CNNL_CAST_FLOAT_TO_HALF;
  for (auto it = MLU_SUPPORTED_CAST_TYPE.begin();
29 30
       it != MLU_SUPPORTED_CAST_TYPE.end();
       ++it) {
31 32 33 34 35 36 37 38
    if (it->first.first == src_type && it->first.second == dst_type) {
      cast_type = it->second;
      break;
    }
  }
  return cast_type;
}

39 40 41 42 43 44
cnnlCastDataType_t GetCastDataType(const DataType& src_type,
                                   const DataType& dst_type) {
  return GetCastDataType(framework::TransToProtoVarType(src_type),
                         framework::TransToProtoVarType(dst_type));
}

45 46
bool MLUSupportsCast(const VT::Type& src_type, const VT::Type& dst_type) {
  for (auto it = MLU_SUPPORTED_CAST_TYPE.begin();
47 48
       it != MLU_SUPPORTED_CAST_TYPE.end();
       ++it) {
49 50 51 52 53 54 55
    if (it->first.first == src_type && it->first.second == dst_type) {
      return true;
    }
  }
  return false;
}

Q
qipengh 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
const std::shared_ptr<MLUCnnlRandomGeneratorDesc>& GetMLURandomGenerator(
    const ExecutionContext& ctx, const int64_t device_id, const int seed) {
  static int64_t num_mlu_devices = -1;
  static std::once_flag num_devices_init_flag;
  static std::deque<std::once_flag> mlu_device_flags;
  static std::vector<std::shared_ptr<MLUCnnlRandomGeneratorDesc>>
      mlu_rand_generators;

  std::call_once(num_devices_init_flag, []() {
    num_mlu_devices = paddle::platform::GetMLUDeviceCount();
    mlu_device_flags.resize(num_mlu_devices);
    mlu_rand_generators.resize(num_mlu_devices);
  });
  if (device_id < 0) {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "mlu device id shoule be greater than 0"));
  }

  std::call_once(mlu_device_flags[device_id], [&]() {
    mlu_rand_generators[device_id].reset(
        new MLUCnnlRandomGeneratorDesc(ctx, seed));
    VLOG(4) << "device_id: " << device_id << ", initial seed: " << seed;
  });
  return mlu_rand_generators[device_id];
}

F
fwenguang 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
class MLUCnnlTensorDescPool {
 public:
  cnnlTensorDescriptor_t Pop() {
    cnnlTensorDescriptor_t raw_desc;
    if (q_.try_dequeue(raw_desc)) {
      return raw_desc;
    } else {
      cnnlCreateTensorDescriptor(&raw_desc);
      return raw_desc;
    }
  }

  void Recycle(cnnlTensorDescriptor_t desc) {
    cnnlResetTensorDescriptor(desc);
    q_.enqueue(desc);
  }

  ~MLUCnnlTensorDescPool() {
    auto size = q_.size_approx();
    if (size > 0) {
      std::vector<cnnlTensorDescriptor_t> vec(size);
      q_.try_dequeue_bulk(vec.data(), size);
      for (auto desc : vec) {
        cnnlDestroyTensorDescriptor(desc);
      }
    }
  }

 private:
  moodycamel::ConcurrentQueue<cnnlTensorDescriptor_t> q_;
};

static MLUCnnlTensorDescPool g_cnnl_tensor_desc_pool;

116
MLUCnnlTensorDesc& MLUCnnlTensorDesc::operator=(MLUCnnlTensorDesc&& rhs) {
F
fwenguang 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  if (raw_tensor_desc) {
    g_cnnl_tensor_desc_pool.Recycle(raw_tensor_desc);
  }
  raw_tensor_desc = rhs.raw_tensor_desc;
  rhs.raw_tensor_desc = nullptr;
  return *this;
}

MLUCnnlTensorDesc::MLUCnnlTensorDesc(const int tensor_dim,
                                     const int dim_sizes[],
                                     const cnnlDataType_t tensor_dtype) {
  raw_tensor_desc = g_cnnl_tensor_desc_pool.Pop();
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptor(
      raw_tensor_desc, CNNL_LAYOUT_ARRAY, tensor_dtype, tensor_dim, dim_sizes));
}

MLUCnnlTensorDesc::MLUCnnlTensorDesc(const int tensor_dim,
                                     const int dim_sizes[],
                                     const cnnlDataType_t tensor_dtype,
                                     const cnnlTensorLayout_t layout) {
  raw_tensor_desc = g_cnnl_tensor_desc_pool.Pop();
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptor(
      raw_tensor_desc, layout, tensor_dtype, tensor_dim, dim_sizes));
}

MLUCnnlTensorDesc::MLUCnnlTensorDesc(const int tensor_dim,
                                     const int dim_sizes[],
                                     const cnnlDataType_t tensor_dtype,
                                     int position)
    : MLUCnnlTensorDesc(tensor_dim, dim_sizes, tensor_dtype) {
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorPosition(raw_tensor_desc, position));
}

MLUCnnlTensorDesc::MLUCnnlTensorDesc(const int tensor_dim,
                                     const int64_t dim_sizes[],
                                     const cnnlDataType_t tensor_dtype) {
  std::vector<int> dim_sizes_int32(tensor_dim);
  std::vector<int64_t>::const_iterator int64_cbegin(dim_sizes);
  std::vector<int64_t>::const_iterator int64_cend(dim_sizes + tensor_dim);
157 158 159
  std::transform(int64_cbegin,
                 int64_cend,
                 dim_sizes_int32.begin(),
F
fwenguang 已提交
160 161
                 &CheckedNarrowing<int64_t, int>);
  raw_tensor_desc = g_cnnl_tensor_desc_pool.Pop();
162 163 164 165 166
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptor(raw_tensor_desc,
                                                     CNNL_LAYOUT_ARRAY,
                                                     tensor_dtype,
                                                     tensor_dim,
                                                     dim_sizes_int32.data()));
F
fwenguang 已提交
167 168 169 170 171 172 173 174 175
}

MLUCnnlTensorDesc::MLUCnnlTensorDesc(const int tensor_dim,
                                     const int64_t dim_sizes[],
                                     const cnnlDataType_t tensor_dtype,
                                     const cnnlTensorLayout_t layout) {
  std::vector<int> dim_sizes_int32(tensor_dim);
  std::vector<int64_t>::const_iterator int64_cbegin(dim_sizes);
  std::vector<int64_t>::const_iterator int64_cend(dim_sizes + tensor_dim);
176 177 178
  std::transform(int64_cbegin,
                 int64_cend,
                 dim_sizes_int32.begin(),
F
fwenguang 已提交
179 180
                 &CheckedNarrowing<int64_t, int>);
  raw_tensor_desc = g_cnnl_tensor_desc_pool.Pop();
181 182 183 184
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptor(raw_tensor_desc,
                                                     layout,
                                                     tensor_dtype,
                                                     tensor_dim,
F
fwenguang 已提交
185 186 187 188 189 190 191 192 193 194
                                                     dim_sizes_int32.data()));
}

MLUCnnlTensorDesc::MLUCnnlTensorDesc(const int tensor_dim,
                                     const int64_t dim_sizes[],
                                     const cnnlDataType_t tensor_dtype,
                                     int position) {
  std::vector<int> dim_sizes_int32(tensor_dim);
  std::vector<int64_t>::const_iterator int64_cbegin(dim_sizes);
  std::vector<int64_t>::const_iterator int64_cend(dim_sizes + tensor_dim);
195 196 197
  std::transform(int64_cbegin,
                 int64_cend,
                 dim_sizes_int32.begin(),
F
fwenguang 已提交
198 199
                 &CheckedNarrowing<int64_t, int>);
  raw_tensor_desc = g_cnnl_tensor_desc_pool.Pop();
200 201 202 203 204
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptor(raw_tensor_desc,
                                                     CNNL_LAYOUT_ARRAY,
                                                     tensor_dtype,
                                                     tensor_dim,
                                                     dim_sizes_int32.data()));
F
fwenguang 已提交
205 206 207 208
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorPosition(raw_tensor_desc, position));
}

209
MLUCnnlTensorDesc::MLUCnnlTensorDesc(const Tensor& tensor,
F
fwenguang 已提交
210 211
                                     const cnnlTensorLayout_t layout,
                                     const cnnlDataType_t tensor_dtype) {
212
  auto dims = phi::vectorize<int>(tensor.dims());
F
fwenguang 已提交
213 214 215 216 217 218 219 220 221
  int tensor_dim = dims.size();
  raw_tensor_desc = g_cnnl_tensor_desc_pool.Pop();
  if (tensor_dim == 0) {
    int scalar_dims[1] = {1};
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptor(
        raw_tensor_desc, layout, tensor_dtype, 1, scalar_dims));
  } else {
    std::vector<int> tensor_dim_sizes_int(dims.begin(), dims.end());
    PADDLE_ENFORCE_MLU_SUCCESS(
222 223 224 225 226
        cnnlSetTensorDescriptor(raw_tensor_desc,
                                layout,
                                tensor_dtype,
                                tensor_dim,
                                tensor_dim_sizes_int.data()));
F
fwenguang 已提交
227 228 229
  }
}

230
MLUCnnlTensorDesc::MLUCnnlTensorDesc(const Tensor& tensor)
231 232
    : MLUCnnlTensorDesc(
          tensor, CNNL_LAYOUT_ARRAY, ToCnnlDataType(tensor.dtype())) {}
233

234
MLUCnnlTensorDesc::MLUCnnlTensorDesc(const Tensor& tensor,
F
fwenguang 已提交
235 236 237 238 239 240 241 242
                                     cnnlTensorLayout_t layout,
                                     const cnnlDataType_t tensor_dtype,
                                     int position)
    : MLUCnnlTensorDesc(tensor, layout, tensor_dtype) {
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorPosition(raw_tensor_desc, position));
}

243
MLUCnnlTensorDesc::MLUCnnlTensorDesc(const Tensor& tensor,
F
fwenguang 已提交
244 245
                                     cnnlTensorLayout_t layout,
                                     const cnnlDataType_t tensor_dtype,
246 247
                                     int position,
                                     float scale)
F
fwenguang 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261
    : MLUCnnlTensorDesc(tensor, layout, tensor_dtype) {
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptorPositionAndScale(
      raw_tensor_desc, position, scale));
}

MLUCnnlTensorDesc::~MLUCnnlTensorDesc() {
  if (raw_tensor_desc) {
    g_cnnl_tensor_desc_pool.Recycle(raw_tensor_desc);
  }
}

MLUCnnlActivationDesc::MLUCnnlActivationDesc(
    const cnnlActivationMode_t act_mode, const float ceof) {
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateActivationDescriptor(&active_desc_));
262
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetActivationDescriptor_v4(
263 264 265 266 267 268
      active_desc_,
      act_mode,
      CNNL_ACTIVATION_HIGH_PRECISION,
      CNNL_NOT_PROPAGATE_NAN,
      ceof,
      1.0f /*sliced_dim*/,
269 270 271 272 273
      1.67326319217681884765625 /*selu_alpha*/,
      1.05070102214813232421875 /*selu_lambda*/));
}

MLUCnnlActivationDesc::MLUCnnlActivationDesc(
274 275 276 277 278
    const cnnlActivationMode_t act_mode,
    const float ceof,
    const float sliced_dim,
    const float selu_alpha,
    const float selu_lambda) {
279
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateActivationDescriptor(&active_desc_));
280 281 282 283 284 285 286 287 288
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetActivationDescriptor_v4(active_desc_,
                                     act_mode,
                                     CNNL_ACTIVATION_HIGH_PRECISION,
                                     CNNL_NOT_PROPAGATE_NAN,
                                     ceof,
                                     sliced_dim,
                                     selu_alpha,
                                     selu_lambda));
F
fwenguang 已提交
289 290 291 292 293 294 295 296 297 298 299 300
}

const cnnlActivationDescriptor_t MLUCnnlActivationDesc::get() const {
  return active_desc_;
}

MLUCnnlActivationDesc::~MLUCnnlActivationDesc() {
  if (active_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyActivationDescriptor(active_desc_));
  }
}

301
MLUCnnlPoolingDesc::MLUCnnlPoolingDesc(
302 303 304 305 306 307 308 309 310 311 312 313 314
    const cnnlPoolingMode_t mode,
    const cnnlNanPropagation_t maxpooling_nan_opt,
    int window_rows,
    int window_cols,
    int64_t pad_up,
    int64_t pad_down,
    int64_t pad_left,
    int64_t pad_right,
    int row_stride,
    int col_stride,
    int row_dilation,
    int col_dilation,
    bool ceil_mode) {
315
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreatePoolingDescriptor(&pooling_desc_));
316 317 318 319 320 321 322 323 324 325 326 327 328 329
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetPooling2dDescriptor_v2(pooling_desc_,
                                                           mode,
                                                           maxpooling_nan_opt,
                                                           window_rows,
                                                           window_cols,
                                                           pad_up,
                                                           pad_down,
                                                           pad_left,
                                                           pad_right,
                                                           row_stride,
                                                           col_stride,
                                                           row_dilation,
                                                           col_dilation,
                                                           ceil_mode));
330 331 332
}

MLUCnnlPoolingDesc::MLUCnnlPoolingDesc(
333 334 335 336 337 338
    const cnnlPoolingMode_t mode,
    const cnnlNanPropagation_t maxpooling_nan_opt,
    const int tensor_rank,
    const std::vector<int>& window,
    const std::vector<int>& padding,
    const std::vector<int>& stride) {
339
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreatePoolingDescriptor(&pooling_desc_));
340 341 342 343 344 345 346
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetPoolingNdDescriptor(pooling_desc_,
                                                        mode,
                                                        maxpooling_nan_opt,
                                                        tensor_rank,
                                                        window.data(),
                                                        padding.data(),
                                                        stride.data()));
347 348 349 350 351 352 353 354 355 356 357 358
}

const cnnlPoolingDescriptor_t MLUCnnlPoolingDesc::get() const {
  return pooling_desc_;
}

MLUCnnlPoolingDesc::~MLUCnnlPoolingDesc() {
  if (pooling_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyPoolingDescriptor(pooling_desc_));
  }
}

Q
qipengh 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
MLUCnnlRandomGeneratorDesc::MLUCnnlRandomGeneratorDesc(
    const ExecutionContext& ctx, const int seed) {
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlRandCreateGenerator(&mlu_generator, CNNL_RAND_RNG_MTGP32));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlRandSetPseudoRandomGeneratorSeed(mlu_generator, seed));
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlRandGetMTGP32StateSize(mlu_generator, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  mlu_state = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* mlu_state_ptr = mlu_state.mutable_data(ctx.GetPlace());

  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlRandMakeMTGP32KernelState(
      handle, mlu_state_ptr, nullptr, nullptr, seed));
377 378 379 380 381 382
}

const cnnlRandGenerator_t MLUCnnlRandomGeneratorDesc::get() const {
  return mlu_generator;
}

Q
qipengh 已提交
383 384
Tensor& MLUCnnlRandomGeneratorDesc::get_state() { return mlu_state; }

385 386 387 388 389 390 391 392 393 394 395 396
MLUCnnlRandomGeneratorDesc::~MLUCnnlRandomGeneratorDesc() {
  if (mlu_generator) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlRandDestroyGenerator(mlu_generator));
  }
}

MLUCnnlNMSDesc::MLUCnnlNMSDesc(const cnnlNmsOutputMode_t mode,
                               const float iou_threshold,
                               const int max_output_size,
                               const float confidence_threshold,
                               const int input_layout) {
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateNmsDescriptor(&nms_desc_));
397 398 399 400 401 402
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetNmsDescriptor_v2(nms_desc_,
                                                     mode,
                                                     iou_threshold,
                                                     max_output_size,
                                                     confidence_threshold,
                                                     input_layout));
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
}

const cnnlNmsDescriptor_t MLUCnnlNMSDesc::get() const { return nms_desc_; }

MLUCnnlNMSDesc::~MLUCnnlNMSDesc() {
  if (nms_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyNmsDescriptor(nms_desc_));
  }
}

MLUCnnlReduceDesc::MLUCnnlReduceDesc(const std::vector<int>& axis_vec,
                                     const cnnlReduceOp_t reduce_op,
                                     const cnnlDataType_t data_type,
                                     const cnnlNanPropagation_t nan_propagation,
                                     const cnnlReduceIndices_t reduce_indices,
                                     const cnnlIndicesType_t indices_type) {
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateReduceDescriptor(&reduction_desc_));
420 421 422 423 424 425 426 427 428
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetReduceDescriptor(reduction_desc_,
                              const_cast<int*>(axis_vec.data()),
                              axis_vec.size(),
                              reduce_op,
                              data_type,
                              nan_propagation,
                              reduce_indices,
                              indices_type));
429 430 431 432 433 434 435 436 437 438 439 440 441
}

const cnnlReduceDescriptor_t MLUCnnlReduceDesc::get() const {
  return reduction_desc_;
}

MLUCnnlReduceDesc::~MLUCnnlReduceDesc() {
  if (reduction_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyReduceDescriptor(reduction_desc_));
  }
}

MLUCnnlOpTensorDesc::MLUCnnlOpTensorDesc(
442 443
    cnnlOpTensorDesc_t op_tensor_op,
    cnnlDataType_t op_tensor_comp_type,
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
    cnnlNanPropagation_t op_tensor_nan_opt) {
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateOpTensorDescriptor(&op_tensor_desc_));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetOpTensorDescriptor(
      op_tensor_desc_, op_tensor_op, op_tensor_comp_type, op_tensor_nan_opt));
}

const cnnlOpTensorDescriptor_t MLUCnnlOpTensorDesc::get() const {
  return op_tensor_desc_;
}

MLUCnnlOpTensorDesc::~MLUCnnlOpTensorDesc() {
  if (op_tensor_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyOpTensorDescriptor(op_tensor_desc_));
  }
}

MLUCnnlConvolutionDesc::MLUCnnlConvolutionDesc(
461 462 463 464 465 466
    const int dims,
    const int pad[],
    const int stride[],
    const int dilation[],
    const int group_count,
    const cnnlDataType_t tensor_dtype) {
467 468 469 470 471 472
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateConvolutionDescriptor(&conv_desc_));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetConvolutionDescriptor(
      conv_desc_, dims, pad, stride, dilation, group_count, tensor_dtype));
}

MLUCnnlConvolutionDesc::MLUCnnlConvolutionDesc(
473 474 475 476 477
    const int dims,
    const int64_t pad[],
    const int64_t stride[],
    const int64_t dilation[],
    const int group_count,
478 479 480 481 482 483 484 485 486 487 488 489 490
    const cnnlDataType_t tensor_dtype) {
  const int spatial_dims = dims - 2;
  const int pad_dims = spatial_dims * 2;
  std::vector<int> pad_int32(pad_dims);
  std::vector<int> stride_int32(spatial_dims);
  std::vector<int> dilation_int32(spatial_dims);
  std::vector<int64_t>::const_iterator int64_pad_cbegin(pad);
  std::vector<int64_t>::const_iterator int64_pad_cend(pad + pad_dims);
  std::vector<int64_t>::const_iterator int64_stride_cbegin(stride);
  std::vector<int64_t>::const_iterator int64_stride_cend(stride + spatial_dims);
  std::vector<int64_t>::const_iterator int64_dilation_cbegin(dilation);
  std::vector<int64_t>::const_iterator int64_dilation_cend(dilation +
                                                           spatial_dims);
491 492 493
  std::transform(int64_pad_cbegin,
                 int64_pad_cend,
                 pad_int32.begin(),
494
                 &CheckedNarrowing<int64_t, int>);
495 496 497 498 499 500 501
  std::transform(int64_stride_cbegin,
                 int64_stride_cend,
                 stride_int32.begin(),
                 &CheckedNarrowing<int64_t, int>);
  std::transform(int64_dilation_cbegin,
                 int64_dilation_cend,
                 dilation_int32.begin(),
502 503
                 &CheckedNarrowing<int64_t, int>);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateConvolutionDescriptor(&conv_desc_));
504 505 506 507 508 509 510
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetConvolutionDescriptor(conv_desc_,
                                                          dims,
                                                          pad_int32.data(),
                                                          stride_int32.data(),
                                                          dilation_int32.data(),
                                                          group_count,
                                                          tensor_dtype));
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
}

const cnnlConvolutionDescriptor_t MLUCnnlConvolutionDesc::get() const {
  return conv_desc_;
}

MLUCnnlConvolutionDesc::~MLUCnnlConvolutionDesc() {
  if (conv_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyConvolutionDescriptor(conv_desc_));
  }
}

MLUCnnlBatchSpaceDesc::MLUCnnlBatchSpaceDesc(uint32_t block_shape[],
                                             uint32_t paddings[],
                                             const uint32_t block_shape_size,
                                             const uint32_t paddings_size) {
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateSpaceBatchNdDescriptor(&op_desc_));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetSpaceBatchNdDescriptor(
      op_desc_, block_shape, block_shape_size, paddings, paddings_size));
}

void MLUCnnlBatchSpaceDesc::getSpace2batchNdextraInputSize(
    const ExecutionContext& ctx, const cnnlTensorDescriptor_t input_desc) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetSpace2batchNdExtraInputSize(
      handle, input_desc, op_desc_, &extra_input_size_));
}

void MLUCnnlBatchSpaceDesc::getBatch2spaceNdextraInputSize(
    const ExecutionContext& ctx, const cnnlTensorDescriptor_t input_desc) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetBatch2spaceNdExtraInputSize(
      handle, input_desc, op_desc_, &extra_input_size_));
}

void MLUCnnlBatchSpaceDesc::initSpace2batchNdExtraInput(
547 548
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t input_desc,
549 550 551 552 553 554 555
    void* extra_host_input) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlInitSpace2batchNdExtraInput(
      handle, input_desc, op_desc_, extra_host_input));
}

void MLUCnnlBatchSpaceDesc::initBatch2spaceNdExtraInput(
556 557
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t input_desc,
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
    void* extra_host_input) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlInitBatch2spaceNdExtraInput(
      handle, input_desc, op_desc_, extra_host_input));
}

const cnnlSpaceBatchNdDescriptor_t MLUCnnlBatchSpaceDesc::get() const {
  return op_desc_;
}

size_t MLUCnnlBatchSpaceDesc::getExtraInputSize() const {
  return extra_input_size_;
}

MLUCnnlBatchSpaceDesc::~MLUCnnlBatchSpaceDesc() {
  if (op_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroySpaceBatchNdDescriptor(op_desc_));
  }
}

MLUCnnlTrigonDesc::MLUCnnlTrigonDesc(
    const cnnlTrigonFunctionMode_t trigon_function_mode) {
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateTrigonDescriptor(&trigon_desc_));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTrigonDescriptor(trigon_desc_, trigon_function_mode));
}

const cnnlTrigonDescriptor_t MLUCnnlTrigonDesc::get() const {
  return trigon_desc_;
}

MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() {
  if (trigon_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyTrigonDescriptor(trigon_desc_));
  }
}

595 596 597 598 599 600 601
MLUCnnlDCNDesc::MLUCnnlDCNDesc(int dimNb,
                               const int* pad,
                               const int* stride,
                               const int* dilation,
                               int deformable_group,
                               int conv_group,
                               int im2col_step) {
602 603
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateDCNDescriptor(&dcn_desc_));
  const cnnlDataType_t compute_type = CNNL_DTYPE_FLOAT;
604 605 606 607 608 609 610 611 612
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetDCNDescriptor(dcn_desc_,
                                                  dimNb,
                                                  pad,
                                                  stride,
                                                  dilation,
                                                  deformable_group,
                                                  conv_group,
                                                  im2col_step,
                                                  compute_type));
613 614 615 616 617 618 619 620 621 622
}

const cnnlDCNDescriptor_t MLUCnnlDCNDesc::get() const { return dcn_desc_; }

MLUCnnlDCNDesc::~MLUCnnlDCNDesc() {
  if (dcn_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyDCNDescriptor(dcn_desc_));
  }
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
MLUSeqDataDesc::MLUSeqDataDesc(cnnlSeqDataLayout_t layout,
                               cnnlDataType_t dtype,
                               int dimNb,
                               const int dimSize[],
                               int seqLengthArraySize,
                               const int seqLengthArray[],
                               void* paddingFill) {
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateSeqDataDescriptor(&seq_data_desc_));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetSeqDataDescriptor(seq_data_desc_,
                                                      layout,
                                                      dtype,
                                                      dimNb,
                                                      dimSize,
                                                      seqLengthArraySize,
                                                      seqLengthArray,
                                                      paddingFill));
}

const cnnlSeqDataDescriptor_t MLUSeqDataDesc::get() const {
  return seq_data_desc_;
}

MLUSeqDataDesc::~MLUSeqDataDesc() {
  if (seq_data_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroySeqDataDescriptor(seq_data_desc_));
  }
}

MLURNNDesc::MLURNNDesc(const int hidden_size,
                       const int num_layers,
                       const cnnlRNNInputMode_t input_mode,
                       const cnnlDirectionMode_t direction,
                       const cnnlRNNMode_t rnn_mode) {
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateRNNDescriptor(&rnn_desc_));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetRNNDescriptor(
      rnn_desc_, hidden_size, num_layers, input_mode, direction, rnn_mode));
}

MLURNNDesc::MLURNNDesc(cnnlRNNMode_t cell_mode,
                       cnnlRNNBiasMode_t bias_mode,
                       cnnlDirectionMode_t direction,
                       cnnlRNNInputMode_t input_mode,
                       cnnlDataType_t data_type,
                       cnnlDataType_t math_prec,
                       int input_size,
                       int hidden_size,
                       int proj_size,
                       int layer_num,
                       void* dropout_desc,
                       cnnlRNNPaddingMode_t padding_mode) {
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateRNNDescriptor(&rnn_desc_));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetRNNDescriptor_v2(rnn_desc_,
                                                     cell_mode,
                                                     bias_mode,
                                                     direction,
                                                     input_mode,
                                                     data_type,
                                                     math_prec,
                                                     input_size,
                                                     hidden_size,
                                                     proj_size,
                                                     layer_num,
                                                     dropout_desc,
                                                     padding_mode));
}

const cnnlRNNDescriptor_t MLURNNDesc::get() const { return rnn_desc_; }

MLURNNDesc::~MLURNNDesc() {
  if (rnn_desc_) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyRNNDescriptor(rnn_desc_));
  }
}

697
/* static */ void MLUCnnl::Active(const ExecutionContext& ctx,
F
fwenguang 已提交
698 699
                                  cnnlActivationDescriptor_t active_desc,
                                  const cnnlTensorDescriptor_t input_desc,
700
                                  const void* input,
F
fwenguang 已提交
701
                                  const cnnlTensorDescriptor_t output_desc,
702 703
                                  void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
F
fwenguang 已提交
704 705 706 707 708

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlActivationForward(
      handle, active_desc, NULL, input_desc, input, NULL, output_desc, output));
}

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
/* static */ void MLUCnnl::ActiveGrad(const ExecutionContext& ctx,
                                      cnnlActivationDescriptor_t active_desc,
                                      const void* alpha,
                                      const void* beta,
                                      const cnnlTensorDescriptor_t y_desc,
                                      const void* y,
                                      const cnnlTensorDescriptor_t diff_y_desc,
                                      const void* diff_y,
                                      const cnnlTensorDescriptor_t x_desc,
                                      const void* x,
                                      const cnnlTensorDescriptor_t diff_x_desc,
                                      void* diff_x) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlActivationBackward(handle,
                                                    active_desc,
                                                    alpha,
                                                    y_desc,
                                                    y,
                                                    diff_y_desc,
                                                    diff_y,
                                                    x_desc,
                                                    x,
                                                    beta,
                                                    diff_x_desc,
                                                    diff_x));
F
fwenguang 已提交
735 736
}

737
/* static */ void MLUCnnl::Concat(const ExecutionContext& ctx,
738 739
                                  const int pack_num,
                                  const int axis,
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
                                  const cnnlTensorDescriptor_t inputs_desc[],
                                  const void* const inputs[],
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConcatWorkspaceSize(handle, pack_num, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

755 756 757 758 759 760 761 762 763
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlConcat(handle,
                                        pack_num,
                                        axis,
                                        inputs_desc,
                                        inputs,
                                        workspace_ptr,
                                        workspace_size,
                                        output_desc,
                                        output));
764 765
}

Z
zn 已提交
766
/* static */ void MLUCnnl::Concat(const MLUDeviceContext& dev_ctx,
767 768
                                  const int pack_num,
                                  const int axis,
Z
zn 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782
                                  const cnnlTensorDescriptor_t inputs_desc[],
                                  const void* const inputs[],
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
  cnnlHandle_t handle = dev_ctx.cnnl_handle();

  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConcatWorkspaceSize(handle, pack_num, &workspace_size));

  Tensor workspace(paddle::experimental::DataType::INT8);
  workspace.Resize(framework::DDim({static_cast<int64_t>(workspace_size)}));
  void* workspace_ptr = workspace.mutable_data(dev_ctx.GetPlace());

783 784 785 786 787 788 789 790 791
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlConcat(handle,
                                        pack_num,
                                        axis,
                                        inputs_desc,
                                        inputs,
                                        workspace_ptr,
                                        workspace_size,
                                        output_desc,
                                        output));
Z
zn 已提交
792 793
}

794 795 796 797 798 799 800 801
/* static */ void MLUCnnl::Div(const ExecutionContext& ctx,
                               cnnlComputationPreference_t prefer,
                               const cnnlTensorDescriptor_t in0_desc,
                               const void* in0,
                               const cnnlTensorDescriptor_t in1_desc,
                               const void* in1,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
802 803 804 805 806 807 808 809 810 811 812
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetDivWorkspaceSize(
      handle, in0_desc, in1_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

813 814 815 816 817 818 819 820 821 822
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlDiv_v2(handle,
                                        prefer,
                                        in0_desc,
                                        in0,
                                        in1_desc,
                                        in1,
                                        workspace_ptr,
                                        workspace_size,
                                        output_desc,
                                        output));
823 824
}

825 826 827
/* static */ void MLUCnnl::Fill(const ExecutionContext& ctx,
                                const cnnlPointerMode_t pointer_mode,
                                const void* value_ptr,
828 829 830 831
                                const cnnlTensorDescriptor_t output_desc,
                                void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

832 833
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlFill_v3(handle, pointer_mode, value_ptr, output_desc, output));
834 835 836
}

/* static */ void MLUCnnl::QuantifyOffline(
837 838 839 840 841 842
    const ExecutionContext& ctx,
    cnnlQuantizeMode_t mode,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
843 844 845 846 847 848 849
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlQuantizeV1(handle, mode, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::LRN(const ExecutionContext& ctx,
850 851 852 853
                               const int local_size,
                               const double alpha,
                               const double beta,
                               const double k,
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
                               const cnnlTensorDescriptor_t input_quant_desc,
                               const void* input_quant,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetLrnWorkspaceSize(
      handle, input_quant_desc, output_desc, local_size, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  const cnnlLrnMode_t mode = CNNL_LRN_CROSS_CHANNEL;
870 871 872 873 874 875 876 877 878 879 880 881
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlLrn(handle,
                                     mode,
                                     local_size,
                                     alpha,
                                     beta,
                                     k,
                                     workspace_ptr,
                                     workspace_size,
                                     input_quant_desc,
                                     const_cast<void*>(input_quant),
                                     output_desc,
                                     output));
882 883 884
}

/* static */ void MLUCnnl::QuantifyOnline(
885 886 887 888 889 890 891 892 893
    const ExecutionContext& ctx,
    const int bitwidth,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const bool compute_scale,
    void* position,
    void* scale,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
894 895 896 897 898 899 900 901 902 903 904 905 906 907
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetQuantizeParamWorkspaceSize(handle, input_desc, &workspace_size));

  // use ctx allocate interface for profiling purpose
  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  const cnnlQuantizeMode_t mode =
      compute_scale ? CNNL_QUANTIZE_POSITION_SCALE : CNNL_QUANTIZE_POSITION;
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlQuantizeParam(handle,
                                               mode,
                                               input_desc,
                                               input,
                                               bitwidth,
                                               workspace_ptr,
                                               workspace_size,
                                               position,
                                               scale,
                                               nullptr));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlQuantizeV2(handle,
                                            mode,
                                            input_desc,
                                            input,
                                            position,
                                            scale,
                                            nullptr,
                                            output_desc,
                                            output));
}

/* static */ void MLUCnnl::Range(const ExecutionContext& ctx,
                                 const void* start,
                                 const void* end,
                                 const void* step,
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
                                 const cnnlDataType_t output_dtype,
                                 void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlArange(handle, start, end, step, output_dtype, output));
}

/* static */ void MLUCnnl::Round(const ExecutionContext& ctx,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlRound(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::SparseSoftmaxXentWithLogits(
952 953 954 955 956 957 958 959 960 961
    const ExecutionContext& ctx,
    cnnlSoftmaxMode_t mode,
    const cnnlTensorDescriptor_t x_desc,
    const void* input,
    const cnnlTensorDescriptor_t label_desc,
    const void* label,
    const cnnlTensorDescriptor_t y_desc,
    void* output,
    const cnnlTensorDescriptor_t diff_y_desc,
    void* back_out) {
962 963
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

F
fwenguang 已提交
964
  const cnnlComputationPreference_t prefer = CNNL_COMPUTATION_HIGH_PRECISION;
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSparseSoftmaxCrossEntropyWithLogits_v2(handle,
                                                 prefer,
                                                 mode,
                                                 x_desc,
                                                 input,
                                                 label_desc,
                                                 label,
                                                 y_desc,
                                                 output,
                                                 diff_y_desc,
                                                 back_out));
}

/* static */ void MLUCnnl::Cumsum(const ExecutionContext& ctx,
                                  const int axis,
                                  const bool exclusive,
                                  const bool reverse,
983 984
                                  const cnnlTensorDescriptor_t input_desc,
                                  const void* input,
985
                                  const cnnlTensorDescriptor_t output_desc,
986 987 988 989 990
                                  void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  // NAN propagation mode: Only support CNNL_NOT_PROPAGATE_NAN now.
  cnnlNanPropagation_t mode = CNNL_NOT_PROPAGATE_NAN;
991 992 993 994 995 996 997 998
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCumsum(handle,
                                        input_desc,
                                        input,
                                        axis,
                                        exclusive,
                                        reverse,
                                        mode,
                                        output_desc,
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
                                        output));
}

/* static */ void MLUCnnl::BroadcastTo(const ExecutionContext& ctx,
                                       const cnnlTensorDescriptor_t input_desc,
                                       const void* input,
                                       const cnnlTensorDescriptor_t output_desc,
                                       void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlExpand(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::AssignAdd(const ExecutionContext& ctx,
1014 1015
                                     const void* alpha,
                                     const void* beta,
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
                                     const cnnlTensorDescriptor_t update_desc,
                                     const void* update,
                                     const cnnlTensorDescriptor_t param_desc,
                                     void* param) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlAssignAdd(
      handle, alpha, update_desc, update, nullptr, 0, beta, param_desc, param));
}

/* static */ void MLUCnnl::AssignSub(const ExecutionContext& ctx,
1027 1028
                                     const void* alpha,
                                     const void* beta,
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
                                     const cnnlTensorDescriptor_t update_desc,
                                     const void* update,
                                     const cnnlTensorDescriptor_t param_desc,
                                     void* param) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlAssignSub(
      handle, alpha, update_desc, update, nullptr, 0, beta, param_desc, param));
}

/* static */ void MLUCnnl::Assign(const ExecutionContext& ctx,
                                  const cnnlTensorDescriptor_t update_desc,
                                  const void* update,
                                  const cnnlTensorDescriptor_t param_desc,
                                  void* param) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlCopy(handle, update_desc, update, param_desc, param));
}

/* static */ void MLUCnnl::SGD(const ExecutionContext& ctx,
                               const cnnlTensorDescriptor_t grad_desc,
1052 1053
                               const void* grad,
                               const void* lr,
1054 1055 1056 1057 1058 1059 1060 1061
                               const cnnlTensorDescriptor_t var_desc,
                               void* var) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGradientDescent(handle, grad_desc, grad, lr, var_desc, var));
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
/* static */ void MLUCnnl::ApplyAdaGrad(const ExecutionContext& ctx,
                                        const cnnlTensorDescriptor_t grad_desc,
                                        const void* grad,
                                        const cnnlTensorDescriptor_t accum_desc,
                                        void* accum,
                                        const cnnlTensorDescriptor_t var_desc,
                                        void* var,
                                        const void* lr,
                                        const bool update_slots) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlApplyAdaGrad(handle,
                                              grad_desc,
                                              grad,
                                              accum_desc,
                                              accum,
                                              var_desc,
                                              var,
                                              lr,
                                              update_slots));
}

/* static */ void MLUCnnl::ApplyRMSProp(const ExecutionContext& ctx,
                                        const cnnlTensorDescriptor_t grad_desc,
                                        const void* grad,
                                        const void* lr,
                                        const void* rho,
                                        const void* momentum,
                                        const void* epsilon,
                                        const cnnlTensorDescriptor_t var_desc,
                                        void* var,
                                        const cnnlTensorDescriptor_t ms_desc,
                                        void* ms,
                                        const cnnlTensorDescriptor_t mom_desc,
                                        void* mom) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlRMSProp(handle,
                                         lr,
                                         rho,
                                         epsilon,
                                         momentum,
                                         grad_desc,
                                         grad,
                                         var_desc,
                                         var,
                                         ms_desc,
                                         ms,
                                         mom_desc,
                                         mom));
1112 1113 1114
}

/* static */ void MLUCnnl::ApplyCenterRMSProp(
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t grad_desc,
    const void* grad,
    const void* lr,
    const void* rho,
    const void* momentum,
    const void* epsilon,
    const cnnlTensorDescriptor_t var_desc,
    void* var,
    const cnnlTensorDescriptor_t mg_desc,
    void* mg,
    const cnnlTensorDescriptor_t ms_desc,
    void* ms,
    const cnnlTensorDescriptor_t mom_desc,
    void* mom) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlApplyCenterRMSProp(handle,
                                                    var_desc,
                                                    var,
                                                    mg_desc,
                                                    mg,
                                                    ms_desc,
                                                    ms,
                                                    mom_desc,
                                                    mom,
                                                    grad_desc,
                                                    grad,
                                                    lr,
                                                    rho,
                                                    momentum,
                                                    epsilon));
}

/* static */ void MLUCnnl::ApplyAdam(const ExecutionContext& ctx,
                                     const cnnlTensorDescriptor_t var_desc,
                                     void* var,
                                     const cnnlTensorDescriptor_t m_desc,
                                     void* m,
                                     const cnnlTensorDescriptor_t v_desc,
                                     void* v,
                                     const cnnlTensorDescriptor_t grad_desc,
                                     const void* grad,
                                     const void* lr,
                                     const void* beta1,
                                     const void* beta2,
                                     const void* beta1_power,
                                     const void* beta2_power,
                                     const void* epsilon,
                                     const bool use_nesterov) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlApplyAdam(handle,
                                           var_desc,
                                           var,
                                           m_desc,
                                           m,
                                           v_desc,
                                           v,
                                           grad_desc,
                                           grad,
                                           lr,
                                           beta1,
                                           beta2,
                                           beta1_power,
                                           beta2_power,
                                           epsilon,
                                           use_nesterov));
}

/* static */ void MLUCnnl::ApplyAdaMax(const ExecutionContext& ctx,
                                       const cnnlTensorDescriptor_t grad_desc,
                                       const cnnlTensorDescriptor_t var_desc,
                                       void* var,
                                       const cnnlTensorDescriptor_t m_desc,
                                       void* m,
                                       const cnnlTensorDescriptor_t v_desc,
                                       void* v,
                                       const void* diff,
                                       const void* lr,
                                       const void* beta1,
                                       const void* beta2,
                                       const void* beta1_power,
                                       const void* epsilon) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlApplyAdaMax(handle,
                                             var_desc,
                                             var,
                                             m_desc,
                                             m,
                                             v_desc,
                                             v,
                                             grad_desc,
                                             diff,
                                             lr,
                                             beta1,
                                             beta2,
                                             beta1_power,
                                             epsilon));
1215 1216 1217 1218 1219 1220
}

/* static */ void MLUCnnl::ApplyMomentum(const ExecutionContext& ctx,
                                         const cnnlTensorDescriptor_t grad_desc,
                                         const void* grad,
                                         const bool use_nesterov,
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
                                         const void* lr,
                                         const void* momentum,
                                         void* var,
                                         void* accum) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMomentum(handle,
                                          grad_desc,
                                          var,
                                          grad_desc,
                                          accum,
                                          grad_desc,
                                          grad,
                                          lr,
                                          momentum,
1236 1237 1238 1239
                                          use_nesterov));
}

/* static */ void MLUCnnl::ApplyKerasMomentum(
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t grad_desc,
    const void* grad,
    const bool use_nesterov,
    const void* lr,
    const void* momentum,
    void* var,
    void* accum) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlKerasMomentum(handle,
                                               grad_desc,
                                               var,
                                               grad_desc,
                                               accum,
                                               grad_desc,
                                               grad,
                                               lr,
                                               momentum,
                                               use_nesterov));
1260 1261 1262 1263
}

/* static */ void MLUCnnl::ApplyAdadelta(const ExecutionContext& ctx,
                                         const cnnlTensorDescriptor_t grad_desc,
1264 1265 1266 1267 1268 1269
                                         const void* diff,
                                         const void* lr,
                                         const void* rho,
                                         const void* epsilon,
                                         void* var,
                                         void* accum,
1270 1271 1272
                                         void* accum_update) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlApplyAdadelta(handle,
                                               grad_desc,
                                               var,
                                               grad_desc,
                                               accum,
                                               grad_desc,
                                               accum_update,
                                               grad_desc,
                                               diff,
                                               lr,
                                               rho,
                                               epsilon));
1285 1286
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
/* static */ void MLUCnnl::Scale(const ExecutionContext& ctx,
                                 const int axis,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input,
                                 const cnnlTensorDescriptor_t alpha_desc,
                                 const void* alpha,
                                 const cnnlTensorDescriptor_t beta_desc,
                                 const void* beta,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
1297 1298
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlScale(handle,
                                       axis,
                                       input_desc,
                                       input,
                                       alpha_desc,
                                       alpha,
                                       beta_desc,
                                       beta,
                                       output_desc,
                                       output));
1309 1310
}

1311 1312
/* static */ void MLUCnnl::AddN(const ExecutionContext& ctx,
                                uint32_t input_num,
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
                                const cnnlTensorDescriptor_t inputs_desc[],
                                const void* inputs[],
                                const cnnlTensorDescriptor_t output_desc,
                                void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlAddN(handle, inputs_desc, inputs, input_num, output_desc, output));
}

1323 1324 1325 1326 1327 1328 1329
/* static */ void MLUCnnl::Log(const ExecutionContext& ctx,
                               cnnlComputationPreference_t prefer,
                               cnnlLogBase_t log_base,
                               const cnnlTensorDescriptor_t input_desc,
                               const void* input,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
1330 1331
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1332 1333
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlLog_v2(
      handle, prefer, log_base, input_desc, input, output_desc, output));
1334 1335
}

1336 1337 1338 1339 1340 1341 1342 1343 1344
/* static */ void MLUCnnl::Matmul(const ExecutionContext& ctx,
                                  const bool transpose_a,
                                  const bool transpose_b,
                                  const cnnlTensorDescriptor_t in0_desc,
                                  const void* in0,
                                  const cnnlTensorDescriptor_t in1_desc,
                                  const void* in1,
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
1345 1346 1347 1348
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  float alpha = 1.0f;
  float beta = 0.0f;

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMatMul(handle,
                                        transpose_a,
                                        transpose_b,
                                        reinterpret_cast<void*>(&alpha),
                                        in0_desc,
                                        in0,
                                        in1_desc,
                                        in1,
                                        reinterpret_cast<void*>(&beta),
                                        output_desc,
                                        output));
1360 1361
}

1362 1363 1364 1365 1366 1367 1368 1369 1370
/* static */ void MLUCnnl::BatchMatmul(const ExecutionContext& ctx,
                                       const bool transpose_a,
                                       const bool transpose_b,
                                       const cnnlTensorDescriptor_t in0_desc,
                                       const void* in0,
                                       const cnnlTensorDescriptor_t in1_desc,
                                       const void* in1,
                                       const cnnlTensorDescriptor_t output_desc,
                                       void* output) {
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetBatchMatMulBCastWorkspaceSize(
      handle, in0_desc, in1_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulBCast(handle,
                                                  transpose_a,
                                                  transpose_b,
                                                  in0_desc,
                                                  in0,
                                                  in1_desc,
                                                  in1,
                                                  workspace_ptr,
                                                  workspace_size,
                                                  output_desc,
                                                  output));
1393 1394 1395
}

/* static */ void MLUCnnl::OpTensor(
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
    const ExecutionContext& ctx,
    const cnnlOpTensorDescriptor_t op_tensor_desc,
    const cnnlTensorDescriptor_t a_desc,
    const void* a,
    const cnnlTensorDescriptor_t b_desc,
    const void* b,
    const cnnlTensorDescriptor_t output_desc,
    void* output,
    const cnnlDataType_t dtype,
    const float alpha1_float,
    const float alpha2_float,
    const float beta_float) {
1408 1409 1410
  const int alpha1_int = static_cast<const int>(alpha1_float);
  const int alpha2_int = static_cast<const int>(alpha2_float);
  const int beta_int = static_cast<const int>(beta_float);
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

  const void* alpha1_ptr = static_cast<const void*>(&alpha1_float);
  const void* alpha2_ptr = static_cast<const void*>(&alpha2_float);
  const void* beta_ptr = static_cast<const void*>(&beta_float);

  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;

  bool is_dt_float = (dtype == CNNL_DTYPE_FLOAT || dtype == CNNL_DTYPE_HALF);

  //  if datatype is not float, we set alpha and beta to be int
  if (!is_dt_float) {
    alpha1_ptr = static_cast<const void*>(&alpha1_int);
    alpha2_ptr = static_cast<const void*>(&alpha2_int);
    beta_ptr = static_cast<const void*>(&beta_int);
  }

F
fwenguang 已提交
1428 1429
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetOpTensorWorkspaceSize(
      handle, a_desc, b_desc, output_desc, &workspace_size));
1430 1431 1432 1433 1434 1435

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlOpTensor(handle,
                                          op_tensor_desc,
                                          alpha1_ptr,
                                          a_desc,
                                          a,
                                          alpha2_ptr,
                                          b_desc,
                                          b,
                                          workspace_ptr,
                                          workspace_size,
                                          beta_ptr,
                                          output_desc,
                                          output));
1449 1450
}

Q
qipengh 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
/* static */ void MLUCnnl::MulAx(const ExecutionContext& ctx,
                                 const cnnlTensorDescriptor_t alpha_desc,
                                 const void* alpha,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetAxWorkspaceSize(handle, alpha_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1467 1468 1469 1470 1471 1472 1473
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlAx_v2(handle,
                                       alpha_desc,
                                       alpha,
                                       output_desc,
                                       output,
                                       workspace_ptr,
                                       workspace_size));
Q
qipengh 已提交
1474 1475
}

1476
/* static */ void MLUCnnl::BiasAddGrad(
1477 1478 1479 1480 1481 1482
    const ExecutionContext& ctx,
    const int axis,
    const cnnlTensorDescriptor_t out_backprop_desc,
    const void* out_backprop,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
1483 1484 1485 1486 1487 1488 1489
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBiasAddBackward(
      handle, out_backprop_desc, out_backprop, axis, output_desc, output));
}

/* static */ void MLUCnnl::RandomUniform(
1490 1491 1492 1493 1494 1495
    const ExecutionContext& ctx,
    const int num,
    const cnnlDataType_t data_type,
    const cnnlRandGenerator_t mlu_generator,
    void* mlu_state,
    void* output) {
1496 1497 1498
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlRandGenerateUniform(
Q
qipengh 已提交
1499 1500 1501 1502
      handle, mlu_generator, data_type, mlu_state, num, 0, 1, output));
}

/* static */ void MLUCnnl::FusedDropout(
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
    const ExecutionContext& ctx,
    const cnnlRandGenerator_t generator,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const float p,
    void* state,
    const cnnlTensorDescriptor_t mask_desc,
    const void* mask,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
Q
qipengh 已提交
1513 1514
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlFusedDropout_v2(handle,
                                                 generator,
                                                 input_desc,
                                                 input,
                                                 p,
                                                 state,
                                                 mask_desc,
                                                 mask,
                                                 output_desc,
                                                 output));
1525 1526 1527
}

/* static */ void MLUCnnl::TopK(
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
    const ExecutionContext& ctx,
    const int k,
    const int dim,
    const bool largest,
    const bool sorted,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t values_output_desc,
    void* values_out,
    const cnnlTensorDescriptor_t indices_output_desc,
1538 1539 1540
    void* indices_out) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlTopKTensor(handle,
                                            input_desc,
                                            input,
                                            k,
                                            dim,
                                            largest,
                                            sorted,
                                            values_output_desc,
                                            values_out,
                                            indices_output_desc,
                                            indices_out));
1552 1553 1554
}

/* static */ void MLUCnnl::StridedSlice(
1555 1556 1557 1558 1559 1560 1561 1562
    const ExecutionContext& ctx,
    const int begin[],
    const int end[],
    const int strides[],
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
1563 1564 1565 1566 1567 1568
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlStridedSlice(
      handle, input_desc, input, begin, end, strides, output_desc, output));
}

1569 1570
/* static */ void MLUCnnl::Split(const ExecutionContext& ctx,
                                 int split_num,
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
                                 int axis,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input_ptr,
                                 const cnnlTensorDescriptor_t output_descs[],
                                 void* output_ptrs[]) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetSplitWorkspaceSize(handle, split_num, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1587 1588 1589 1590 1591 1592 1593 1594 1595
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSplit(handle,
                                       split_num,
                                       axis,
                                       input_desc,
                                       input_ptr,
                                       workspace_ptr,
                                       workspace_size,
                                       output_descs,
                                       output_ptrs));
1596 1597
}

1598 1599
/* static */ void MLUCnnl::Split(const MLUDeviceContext& dev_ctx,
                                 int split_num,
Z
zn 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
                                 int axis,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input_ptr,
                                 const cnnlTensorDescriptor_t output_descs[],
                                 void* output_ptrs[]) {
  cnnlHandle_t handle = dev_ctx.cnnl_handle();

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetSplitWorkspaceSize(handle, split_num, &workspace_size));

  Tensor workspace(paddle::experimental::DataType::INT8);
  workspace.Resize(framework::DDim({static_cast<int64_t>(workspace_size)}));
  void* workspace_ptr = workspace.mutable_data(dev_ctx.GetPlace());

1615 1616 1617 1618 1619 1620 1621 1622 1623
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSplit(handle,
                                       split_num,
                                       axis,
                                       input_desc,
                                       input_ptr,
                                       workspace_ptr,
                                       workspace_size,
                                       output_descs,
                                       output_ptrs));
Z
zn 已提交
1624 1625
}

1626
/* static */ void MLUCnnl::GatherFunctor(
1627 1628 1629 1630 1631 1632 1633 1634 1635
    const ExecutionContext& ctx,
    const int axis,
    const int batch_dims,
    const cnnlTensorDescriptor_t params_desc,
    const void* params,
    const cnnlTensorDescriptor_t indices_desc,
    const void* indices,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
1636 1637
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1638 1639 1640 1641 1642 1643 1644 1645 1646
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchGatherV2(handle,
                                               axis,
                                               batch_dims,
                                               params_desc,
                                               params,
                                               indices_desc,
                                               indices,
                                               output_desc,
                                               output));
1647 1648
}

1649
/* static */ void MLUCnnl::ScatterRefFunctor(
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t params_desc,
    const void* params,
    const cnnlTensorDescriptor_t updates_desc,
    const void* updates,
    const cnnlTensorDescriptor_t indices_desc,
    const void* indices,
    const cnnlScatterRefMode_t mode) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlScatterRef(handle,
                                            params_desc,
                                            params,
                                            indices_desc,
                                            indices,
                                            updates_desc,
                                            updates,
                                            0,
                                            mode));
1669 1670
}

1671
/* static */ void MLUCnnl::ScatterFunctor(
1672 1673 1674 1675 1676 1677 1678 1679 1680
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t params_desc,
    void* params,
    const cnnlTensorDescriptor_t updates_desc,
    const void* updates,
    const cnnlTensorDescriptor_t indices_desc,
    const void* indices,
    const int dim,
    const cnnlScatterMode_t mode) {
1681 1682
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlScatter(handle,
                  dim,
                  params_desc,
                  params,
                  indices_desc,
                  indices,
                  updates_desc,
                  updates,
                  params_desc,
                  params, /* output_desc, output, same with params*/
                  mode));
1695 1696
}

1697
/* static */ void MLUCnnl::StridedSliceGrad(
1698 1699 1700 1701 1702 1703 1704 1705
    const ExecutionContext& ctx,
    const int begin[],
    const int end[],
    const int strides[],
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
1706 1707 1708 1709 1710 1711
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlStridedSliceBackward(
      handle, begin, end, strides, input_desc, input, output_desc, output));
}

1712 1713 1714 1715 1716 1717 1718 1719
/* static */ void MLUCnnl::Logic(const ExecutionContext& ctx,
                                 const cnnlLogicOp_t log_method,
                                 const cnnlTensorDescriptor_t input1_desc,
                                 const void* input1,
                                 const cnnlTensorDescriptor_t input2_desc,
                                 const void* input2,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetLogicOpWorkspaceSize(
      handle, input1_desc, input2_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlLogicOp(handle,
                                         log_method,
                                         input1_desc,
                                         input1,
                                         input2_desc,
                                         input2,
                                         workspace_ptr,
                                         workspace_size,
                                         output_desc,
                                         output));
}

/* static */ void MLUCnnl::Select(const ExecutionContext& ctx,
                                  const cnnlTensorDescriptor_t condition_desc,
                                  const void* condition_ptr,
                                  const cnnlTensorDescriptor_t then_desc,
                                  const void* then_ptr,
                                  const cnnlTensorDescriptor_t else_desc,
                                  const void* else_ptr,
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output_ptr) {
1752 1753
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1754 1755 1756 1757 1758 1759 1760 1761 1762
  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetSelectV2WorkspaceSize(
      handle, condition_desc, then_desc, else_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSelectV2(handle,
                                          condition_desc,
                                          condition_ptr,
                                          then_desc,
                                          then_ptr,
                                          else_desc,
                                          else_ptr,
                                          workspace_ptr,
                                          workspace_size,
                                          output_desc,
                                          output_ptr));
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
}

/*static */ void MLUCnnl::GatherNd(const ExecutionContext& ctx,
                                   const cnnlTensorDescriptor_t params_desc,
                                   const void* params,
                                   const cnnlTensorDescriptor_t indices_desc,
                                   const void* indices,
                                   const cnnlTensorDescriptor_t output_desc,
                                   void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGatherNd(
      handle, params_desc, params, indices_desc, indices, output_desc, output));
}

/* static */ void MLUCnnl::BatchToSpace(
1790 1791 1792 1793 1794
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t output_desc,
    void* output,
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
    const cnnlSpaceBatchParam_t param) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetBatch2spaceWorkspaceSize(
      handle, input_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1807 1808 1809 1810 1811 1812 1813 1814
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatch2space(handle,
                                             input_desc,
                                             input,
                                             output_desc,
                                             output,
                                             param,
                                             workspace_ptr,
                                             workspace_size));
1815 1816 1817
}

/* static */ void MLUCnnl::BatchToSpaceNd(
1818 1819 1820 1821 1822 1823 1824 1825
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    cnnlSpaceBatchNdDescriptor_t param,
    void* extra_device_input,
    size_t extra_input_size,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
1826 1827
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1828 1829 1830 1831 1832 1833 1834 1835
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatch2spaceNd_v2(handle,
                                                  input_desc,
                                                  input,
                                                  output_desc,
                                                  output,
                                                  param,
                                                  extra_device_input,
                                                  extra_input_size));
1836 1837 1838
}

/* static */ void MLUCnnl::SoftmaxForward(
1839 1840 1841 1842 1843 1844 1845 1846 1847
    const ExecutionContext& ctx,
    cnnlSoftmaxAlgorithm_t algorithm,
    cnnlSoftmaxMode_t mode,
    const void* alpha,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const void* beta,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
1848 1849
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

1850 1851 1852 1853 1854 1855 1856 1857 1858
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSoftmaxForward(handle,
                                                algorithm,
                                                mode,
                                                alpha,
                                                input_desc,
                                                input,
                                                beta,
                                                output_desc,
                                                output));
1859 1860
}

1861
/* static */ void MLUCnnl::SoftmaxBackward(
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
    const ExecutionContext& ctx,
    cnnlSoftmaxAlgorithm_t algorithm,
    cnnlSoftmaxMode_t mode,
    const cnnlTensorDescriptor_t y_desc,
    const void* y,
    const cnnlTensorDescriptor_t diff_y_desc,
    const void* diff_y,
    const cnnlTensorDescriptor_t diff_x_desc,
    void* diff_x) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSoftmaxBackward(handle,
                                                 algorithm,
                                                 mode,
                                                 nullptr,
                                                 y_desc,
                                                 y,
                                                 diff_y_desc,
                                                 diff_y,
                                                 nullptr,
                                                 diff_x_desc,
                                                 diff_x));
1884 1885
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
/* static */ void MLUCnnl::Softplus(const ExecutionContext& ctx,
                                    const cnnlTensorDescriptor_t features_desc,
                                    const void* features,
                                    const cnnlTensorDescriptor_t output_desc,
                                    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  const int beta = 1;
  const int threshold = 20;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSoftplusForward(
      handle, features_desc, features, output_desc, output, beta, threshold));
}

/* static */ void MLUCnnl::SoftplusGrad(
1900 1901 1902 1903 1904 1905
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t gradients_desc,
    const void* gradients,
    const cnnlTensorDescriptor_t features_desc,
    const void* features,
    const cnnlTensorDescriptor_t output_desc,
1906 1907 1908 1909 1910
    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  int beta = 1;
  int threshold = 20;
1911 1912 1913 1914 1915 1916 1917 1918 1919
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSoftplusBackward(handle,
                                                  features_desc,
                                                  features,
                                                  gradients_desc,
                                                  gradients,
                                                  output_desc,
                                                  output,
                                                  beta,
                                                  threshold));
1920 1921 1922
}

/* static */ void MLUCnnl::PoolingForward(
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
    const ExecutionContext& ctx,
    cnnlPoolingMode_t pool_mode,
    int64_t output_h,
    int64_t output_w,
    const cnnlPoolingDescriptor_t pooling_desc,
    const void* alpha,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const void* beta,
    const void* extra_input_ptr,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
1935 1936 1937 1938
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetPoolingWorkspaceSize(
1939
      handle, pool_mode, output_w, output_h, &workspace_size));
1940 1941 1942 1943 1944 1945

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlPoolingForward_v2(handle,
                                                   pooling_desc,
                                                   alpha,
                                                   input_desc,
                                                   input,
                                                   beta,
                                                   extra_input_ptr,
                                                   output_desc,
                                                   output,
                                                   workspace_ptr,
                                                   workspace_size));
1957 1958
}

1959
/* static */ void MLUCnnl::AdaptivePoolingForward(
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
    const ExecutionContext& ctx,
    cnnlPoolingMode_t pool_mode,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t output_desc,
    void* output,
    const cnnlTensorDescriptor_t index_desc,
    void* index) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlAdaptivePoolingForward(handle,
                                                        input_desc,
                                                        input,
                                                        pool_mode,
                                                        output_desc,
                                                        output,
                                                        index_desc,
                                                        index));
}

/* static */ void MLUCnnl::Pool3D(const ExecutionContext& ctx,
                                  cnnlPoolingMode_t pool_mode,
                                  const std::vector<int64_t>& output_shape,
                                  const cnnlPoolingDescriptor_t pooling_desc,
                                  const void* alpha,
                                  const cnnlTensorDescriptor_t input_desc,
                                  const void* input,
                                  const void* beta,
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetPoolingWorkspaceSize(
      handle, pool_mode, output_shape[2], output_shape[1], &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlPoolingForward(handle,
                                                pooling_desc,
                                                alpha,
                                                input_desc,
                                                input,
                                                beta,
                                                output_desc,
                                                output,
                                                workspace_ptr,
                                                workspace_size));
2011 2012 2013 2014
}

/* static */ void MLUCnnl::RsqrtGrad(const ExecutionContext& ctx,
                                     const cnnlTensorDescriptor_t data_desc,
2015 2016
                                     const void* y,
                                     const void* diff_y,
2017 2018 2019 2020 2021 2022 2023 2024 2025
                                     void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlRsqrtBackward(handle, data_desc, y, diff_y, output));
}

/* static */ void MLUCnnl::SqrtGrad(const ExecutionContext& ctx,
                                    const cnnlTensorDescriptor_t data_desc,
2026 2027
                                    const void* y,
                                    const void* diff_y,
2028 2029 2030 2031 2032 2033 2034 2035
                                    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSqrtBackward(handle, data_desc, y, diff_y, output));
}

/* static */ void MLUCnnl::UnsortedSegmentSum(
2036 2037 2038 2039 2040 2041
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t data_desc,
    const void* data,
    const cnnlTensorDescriptor_t ids_desc,
    const int* segment_ids,
    const cnnlTensorDescriptor_t output_desc,
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetUnsortedSegmentSumWorkspaceSize(
      handle, data_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2054 2055 2056 2057 2058 2059 2060 2061 2062
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlUnsortedSegmentSum(handle,
                                                    data_desc,
                                                    data,
                                                    ids_desc,
                                                    segment_ids,
                                                    workspace_ptr,
                                                    workspace_size,
                                                    output_desc,
                                                    output));
2063 2064 2065 2066
}

/* static */ void MLUCnnl::Pad(const ExecutionContext& ctx,
                               const cnnlTensorDescriptor_t input_desc,
2067 2068
                               const void* input,
                               const void* paddings,
2069 2070 2071 2072 2073
                               const void* padding_value,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2074 2075
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlPad(
      handle, input_desc, input, paddings, padding_value, output_desc, output));
2076 2077 2078 2079
}

/* static */ void MLUCnnl::OneHot(const ExecutionContext& ctx,
                                  const cnnlTensorDescriptor_t desc_indices,
2080 2081 2082 2083
                                  const void* indices,
                                  const int depth,
                                  const void* on_value,
                                  const void* off_value,
2084 2085 2086 2087 2088
                                  const int axis,
                                  cnnlDataType_t output_data_type,
                                  void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2089 2090 2091 2092 2093 2094 2095 2096 2097
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlOneHot(handle,
                                        desc_indices,
                                        indices,
                                        depth,
                                        on_value,
                                        off_value,
                                        axis,
                                        output_data_type,
                                        output));
2098 2099 2100
}

/* static */ void MLUCnnl::ConvolutionForward(
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
    const ExecutionContext& ctx,
    cnnlConvolutionDescriptor_t conv_desc,
    const void* alpha,
    const void* beta,
    const cnnlTensorDescriptor_t bias_desc,
    const void* bias_ptr,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t filtet_desc,
    const void* filter,
    const cnnlTensorDescriptor_t output_desc,
2112 2113 2114 2115 2116 2117
    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  // cnnl: select best algorithm for convolution compution.
  cnnlConvolutionForwardAlgo_t algo;
  cnnlConvolutionFwdPreference_t preference = CNNL_CONVOLUTION_FWD_FASTEST;
2118 2119 2120 2121 2122 2123 2124
  cnnlGetConvolutionForwardAlgorithm(handle,
                                     conv_desc,
                                     input_desc,
                                     filtet_desc,
                                     output_desc,
                                     preference,
                                     &algo);
2125 2126 2127

  // get workspace size
  size_t workspace_size = 0;
2128 2129 2130 2131 2132 2133 2134 2135 2136
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionForwardWorkspaceSize(handle,
                                             input_desc,
                                             filtet_desc,
                                             output_desc,
                                             bias_desc,
                                             conv_desc,
                                             algo,
                                             &workspace_size));
2137 2138 2139 2140 2141 2142

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlConvolutionForward(handle,
                                                    conv_desc,
                                                    algo,
                                                    alpha,
                                                    input_desc,
                                                    input,
                                                    filtet_desc,
                                                    filter,
                                                    bias_desc,
                                                    bias_ptr,
                                                    workspace_ptr,
                                                    workspace_size,
                                                    beta,
                                                    output_desc,
                                                    output));
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
}

/* static */ void MLUCnnl::Tile(const ExecutionContext& ctx,
                                const cnnlTensorDescriptor_t input_desc,
                                const void* input,
                                const cnnlTensorDescriptor_t output_desc,
                                void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlTile(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::SoftmaxCrossEntropyWithLogits(
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
    const ExecutionContext& ctx,
    cnnlSoftmaxMode_t mode,
    cnnlComputationPreference_t prefer,
    const cnnlTensorDescriptor_t input_desc,
    const void* logits_in,
    const cnnlTensorDescriptor_t label_desc,
    const void* labels_in,
    const cnnlTensorDescriptor_t loss_out_desc,
    void* loss_out,
    const cnnlTensorDescriptor_t back_out_desc,
2182 2183 2184
    void* back_out) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSoftmaxCrossEntropyWithLogits_v2(handle,
                                                                  mode,
                                                                  prefer,
                                                                  input_desc,
                                                                  logits_in,
                                                                  label_desc,
                                                                  labels_in,
                                                                  loss_out_desc,
                                                                  loss_out,
                                                                  back_out_desc,
                                                                  back_out));
2196 2197
}

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
/* static */ void MLUCnnl::Reduce(const ExecutionContext& ctx,
                                  const bool need_workspace,
                                  const cnnlReduceDescriptor_t reduction_desc,
                                  const void* alpha,
                                  const cnnlTensorDescriptor_t input_desc,
                                  const void* input,
                                  const size_t indices_size,
                                  void* indices,
                                  const void* beta,
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
  void* workspace_ptr = nullptr;
  Tensor workspace;
  if (need_workspace) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetReduceOpWorkspaceSize(
        handle, input_desc, output_desc, reduction_desc, &workspace_size));

    auto& dev_ctx = GetDevCtxFromCTX(ctx);
    workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
        {static_cast<int64_t>(workspace_size)}, dev_ctx);

    workspace_ptr = workspace.mutable_data(ctx.GetPlace());
  }

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlReduce(handle,
                                        reduction_desc,
                                        workspace_ptr,
                                        workspace_size,
                                        alpha,
                                        input_desc,
                                        input,
                                        indices_size,
                                        indices,
                                        beta,
                                        output_desc,
                                        output));
2237 2238
}

2239 2240 2241 2242 2243 2244 2245 2246
/* static */ void MLUCnnl::FloorDiv(const ExecutionContext& ctx,
                                    cnnlComputationPreference_t prefer,
                                    const cnnlTensorDescriptor_t input1_desc,
                                    const void* input1,
                                    const cnnlTensorDescriptor_t input2_desc,
                                    const void* input2,
                                    const cnnlTensorDescriptor_t output_desc,
                                    void* output) {
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetFloorDivWorkspaceSize(
      handle, input1_desc, input2_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlFloorDiv_v2(handle,
                                             prefer,
                                             input1_desc,
                                             input1,
                                             input2_desc,
                                             input2,
                                             output_desc,
                                             output,
                                             workspace_ptr,
                                             workspace_size));
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
}

/* static */ void MLUCnnl::FloorMod(const ExecutionContext& ctx,
                                    const cnnlTensorDescriptor_t input1_desc,
                                    const void* input1,
                                    const cnnlTensorDescriptor_t input2_desc,
                                    const void* input2,
                                    const cnnlTensorDescriptor_t output_desc,
                                    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetFloorModWorkspaceSize(
      handle, input1_desc, input2_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2286 2287 2288 2289 2290 2291 2292 2293 2294
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlFloorMod(handle,
                                          input1_desc,
                                          input1,
                                          input2_desc,
                                          input2,
                                          output_desc,
                                          output,
                                          workspace_ptr,
                                          workspace_size));
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
}

/* static */ void MLUCnnl::Maximum(const ExecutionContext& ctx,
                                   const cnnlTensorDescriptor_t input1_desc,
                                   const void* input1,
                                   const cnnlTensorDescriptor_t input2_desc,
                                   const void* input2,
                                   const cnnlTensorDescriptor_t output_desc,
                                   void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetMaximumWorkspaceSize(handle, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2314 2315 2316 2317 2318 2319 2320 2321 2322
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMaximum(handle,
                                         input1_desc,
                                         input1,
                                         input2_desc,
                                         input2,
                                         output_desc,
                                         output,
                                         workspace_ptr,
                                         workspace_size));
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
}

/* static */ void MLUCnnl::Minimum(const ExecutionContext& ctx,
                                   const cnnlTensorDescriptor_t input1_desc,
                                   const void* input1,
                                   const cnnlTensorDescriptor_t input2_desc,
                                   const void* input2,
                                   const cnnlTensorDescriptor_t output_desc,
                                   void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetMinimumWorkspaceSize(handle, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2342 2343 2344 2345 2346 2347 2348 2349 2350
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMinimum(handle,
                                         input1_desc,
                                         input1,
                                         input2_desc,
                                         input2,
                                         output_desc,
                                         output,
                                         workspace_ptr,
                                         workspace_size));
2351 2352
}

2353 2354 2355 2356 2357 2358 2359 2360
/* static */ void MLUCnnl::PowR(const ExecutionContext& ctx,
                                cnnlComputationPreference_t prefer,
                                const cnnlTensorDescriptor_t input1_desc,
                                const void* input1,
                                const cnnlTensorDescriptor_t input2_desc,
                                const void* input2,
                                const cnnlTensorDescriptor_t output_desc,
                                void* output) {
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetPowRWorkspaceSize(
      handle, input1_desc, input2_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlPowR_v2(handle,
                                         prefer,
                                         input1_desc,
                                         input1,
                                         input2_desc,
                                         input2,
                                         workspace_ptr,
                                         workspace_size,
                                         output_desc,
                                         output));
2381 2382
}

2383 2384 2385 2386 2387 2388 2389 2390
/* static */ void MLUCnnl::DivNoNan(const ExecutionContext& ctx,
                                    cnnlComputationPreference_t prefer,
                                    const cnnlTensorDescriptor_t input1_desc,
                                    const void* input1,
                                    const cnnlTensorDescriptor_t input2_desc,
                                    const void* input2,
                                    const cnnlTensorDescriptor_t output_desc,
                                    void* output) {
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetDivNoNanWorkspaceSize(
      handle, input1_desc, input2_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlDivNoNan_v2(handle,
                                             prefer,
                                             input1_desc,
                                             input1,
                                             input2_desc,
                                             input2,
                                             workspace_ptr,
                                             workspace_size,
                                             output_desc,
                                             output));
2411 2412 2413
}

/* static */ void MLUCnnl::SquaredDifference(
2414 2415 2416 2417 2418 2419
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t input1_desc,
    const void* input1,
    const cnnlTensorDescriptor_t input2_desc,
    const void* input2,
    const cnnlTensorDescriptor_t output_desc,
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetSquaredDifferenceWorkspaceSize(
      handle, input1_desc, input2_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2431 2432 2433 2434 2435 2436 2437 2438 2439
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSquaredDifference(handle,
                                                   input1_desc,
                                                   input1,
                                                   input2_desc,
                                                   input2,
                                                   output_desc,
                                                   output,
                                                   workspace_ptr,
                                                   workspace_size));
2440 2441 2442 2443
}

/* static */ void MLUCnnl::L2Loss(const ExecutionContext& ctx,
                                  const cnnlTensorDescriptor_t input_desc,
2444 2445
                                  const void* input,
                                  void* output) {
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlL2Loss(handle, input_desc, input, output));
}

/* static */ void MLUCnnl::Abs(const ExecutionContext& ctx,
                               const cnnlTensorDescriptor_t input_desc,
                               const void* input,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlAbs(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Neg(const ExecutionContext& ctx,
                               const cnnlTensorDescriptor_t input_desc,
                               const void* input,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlNegTensor(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Floor(const ExecutionContext& ctx,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlFloor(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Ceil(const ExecutionContext& ctx,
                                const cnnlTensorDescriptor_t input_desc,
                                const void* input,
                                const cnnlTensorDescriptor_t output_desc,
                                void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlCeil(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::IsNan(const ExecutionContext& ctx,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlIsNan(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Square(const ExecutionContext& ctx,
                                  const cnnlTensorDescriptor_t input_desc,
                                  const void* input,
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSquare(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Sqrt(const ExecutionContext& ctx,
                                cnnlComputationPreference_t prefer,
                                const cnnlTensorDescriptor_t input_desc,
                                const void* input,
                                const cnnlTensorDescriptor_t output_desc,
                                void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSqrt_v2(handle, prefer, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Rsqrt(const ExecutionContext& ctx,
                                 cnnlComputationPreference_t prefer,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlRsqrt_v2(handle, prefer, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Cos(const ExecutionContext& ctx,
                               cnnlComputationPreference_t prefer,
                               const cnnlTensorDescriptor_t input_desc,
                               const void* input,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlCos_v2(handle, prefer, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Sin(const ExecutionContext& ctx,
                               cnnlComputationPreference_t prefer,
                               const cnnlTensorDescriptor_t input_desc,
                               const void* input,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSin_v2(handle, prefer, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::TrigonForward(
2565 2566 2567 2568 2569 2570
    const ExecutionContext& ctx,
    const cnnlTrigonDescriptor_t trigon_desc,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
2571 2572
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2573 2574
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlTrigonForward(
      handle, trigon_desc, input_desc, input, output_desc, output));
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
}

/* static */ void MLUCnnl::Exp(const ExecutionContext& ctx,
                               cnnlComputationPreference_t prefer,
                               const cnnlTensorDescriptor_t input_desc,
                               const void* input,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlExp_v2(handle, prefer, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Sign(const ExecutionContext& ctx,
                                const cnnlTensorDescriptor_t input_desc,
                                const void* input,
                                const cnnlTensorDescriptor_t output_desc,
                                void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSign(handle, input_desc, input, output_desc, output));
}

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/* static */ void MLUCnnl::IndexSelect(const ExecutionContext& ctx,
                                       const int dim,
                                       cnnlTensorDescriptor_t input_desc,
                                       const void* input,
                                       const cnnlTensorDescriptor_t index_desc,
                                       const void* index,
                                       const cnnlTensorDescriptor_t output_desc,
                                       void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlIndexSelect(
      handle, dim, input_desc, input, index_desc, index, output_desc, output));
}

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
/* static */ void MLUCnnl::IsFinite(const ExecutionContext& ctx,
                                    const cnnlTensorDescriptor_t input_desc,
                                    const void* input,
                                    const cnnlTensorDescriptor_t output_desc,
                                    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlIsFinite(handle, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::IsNanInf(const ExecutionContext& ctx,
                                    const cnnlTensorDescriptor_t input_desc,
2626 2627
                                    const void* input,
                                    void* output) {
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  // TODO(CTR-3849): output type should be void*, but now bool*.
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlNanInf(handle, input_desc, input, reinterpret_cast<bool*>(output)));
}

/* static */ void MLUCnnl::Erf(const ExecutionContext& ctx,
                               cnnlComputationPreference_t prefer,
                               const cnnlTensorDescriptor_t input_desc,
                               const void* input,
                               const cnnlTensorDescriptor_t output_desc,
                               void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlErf_v2(handle, prefer, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::Log1p(const ExecutionContext& ctx,
                                 cnnlComputationPreference_t prefer,
                                 const cnnlTensorDescriptor_t input_desc,
                                 const void* input,
                                 const cnnlTensorDescriptor_t output_desc,
                                 void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlLog1p(handle, prefer, input_desc, input, output_desc, output));
}

/* static */ void MLUCnnl::LogicalNot(const ExecutionContext& ctx,
                                      const cnnlTensorDescriptor_t input_desc,
                                      const void* input,
                                      const cnnlTensorDescriptor_t output_desc,
                                      void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlLogicOp(handle,
                                         CNNL_LOGIC_OP_NOT,
                                         input_desc,
                                         input,
                                         input_desc,
                                         input,
                                         nullptr,
                                         0,
                                         output_desc,
                                         output));
2676 2677 2678
}

/* static */ void MLUCnnl::DynamicStitch(
2679 2680 2681 2682 2683 2684 2685 2686 2687
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t* indices_desc,
    const int** indices,
    const cnnlTensorDescriptor_t* data_desc,
    const void** data,
    const int size,
    int* indices_dims,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetDynamicStitchWorkspaceSize(handle, size, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlDynamicStitch(handle,
                                               indices_desc,
                                               indices,
                                               data_desc,
                                               data,
                                               size,
                                               indices_dims,
                                               workspace_ptr,
                                               workspace_size,
                                               output_desc,
                                               output));
2709 2710 2711
}

/* static */ void MLUCnnl::CropAndResize(
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
    const ExecutionContext& ctx,
    const std::string method_name,
    const float extrapolation_value,
    const cnnlTensorDescriptor_t image_desc,
    const void* image,
    const cnnlTensorDescriptor_t boxes_desc,
    const void* boxes,
    const cnnlTensorDescriptor_t box_index_desc,
    const void* box_index,
    const cnnlTensorDescriptor_t output_desc,
2722 2723 2724 2725 2726 2727 2728 2729
    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  cnnlCropAndResizeMode_t mode = CNNL_CROP_AND_RESIZE_BILINEAR;
  if (method_name == "nearest") {
    mode = CNNL_CROP_AND_RESIZE_NEAREST;
  }

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCropAndResize(handle,
                                               image_desc,
                                               image,
                                               boxes_desc,
                                               boxes,
                                               box_index_desc,
                                               box_index,
                                               mode,
                                               extrapolation_value,
                                               output_desc,
                                               output));
2741 2742 2743
}

/* static */ void MLUCnnl::CropAndResizeBackwardImage(
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
    const ExecutionContext& ctx,
    const std::string method_name,
    const cnnlTensorDescriptor_t grads_desc,
    const void* grads,
    const cnnlTensorDescriptor_t boxes_desc,
    const void* boxes,
    const cnnlTensorDescriptor_t box_idx_desc,
    const void* box_idx,
    const cnnlTensorDescriptor_t grads_image_desc,
    void* grads_image) {
2754 2755 2756 2757 2758 2759 2760
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  cnnlCropAndResizeMode_t mode = CNNL_CROP_AND_RESIZE_BILINEAR;
  if (method_name == "nearest") {
    mode = CNNL_CROP_AND_RESIZE_NEAREST;
  }

2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCropAndResizeBackwardImage(handle,
                                                            grads_desc,
                                                            grads,
                                                            boxes_desc,
                                                            boxes,
                                                            box_idx_desc,
                                                            box_idx,
                                                            mode,
                                                            grads_image_desc,
                                                            grads_image));
2771 2772 2773
}

/* static */ void MLUCnnl::CropAndResizeBackwardBoxes(
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t image_desc,
    const void* image,
    const cnnlTensorDescriptor_t boxes_desc,
    const void* boxes,
    const cnnlTensorDescriptor_t box_idx_desc,
    const void* box_idx,
    const cnnlTensorDescriptor_t output_desc,
2784 2785 2786 2787
    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  cnnlCropAndResizeMode_t mode = CNNL_CROP_AND_RESIZE_BILINEAR;

2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCropAndResizeBackwardBoxes(handle,
                                                            input_desc,
                                                            input,
                                                            image_desc,
                                                            image,
                                                            boxes_desc,
                                                            boxes,
                                                            box_idx_desc,
                                                            box_idx,
                                                            output_desc,
                                                            output,
                                                            mode));
}

/* static */ void MLUCnnl::Interp(const ExecutionContext& ctx,
                                  const cnnlInterpMode_t mode,
                                  const bool align_corners,
                                  const bool half_pixel_centers,
                                  const cnnlTensorDescriptor_t input_desc,
                                  const void* input,
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
2810 2811
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlInterp_v2(handle,
                                           align_corners,
                                           half_pixel_centers,
                                           mode,
                                           NULL,
                                           true,
                                           input_desc,
                                           input,
                                           output_desc,
                                           output));
2822 2823 2824
}

/* static */ void MLUCnnl::InterpBackward(
2825 2826 2827 2828 2829 2830 2831 2832
    const ExecutionContext& ctx,
    const cnnlInterpBackwardMode_t mode,
    const bool align_corners,
    const bool half_pixel_centers,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
2833 2834
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlInterpBackward_v2(handle,
                                                   align_corners,
                                                   half_pixel_centers,
                                                   mode,
                                                   NULL,
                                                   true,
                                                   input_desc,
                                                   input,
                                                   output_desc,
                                                   output));
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
}

/* static */ void MLUCnnl::Cast(const ExecutionContext& ctx,
                                cnnlCastDataType_t cast_type,
                                const cnnlTensorDescriptor_t input_desc,
                                const void* input,
                                const cnnlTensorDescriptor_t output_desc,
                                void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2855 2856
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCastDataType(
      handle, input_desc, input, cast_type, output_desc, output));
2857 2858
}

2859 2860
/*static*/ void MLUCnnl::Clip(const ExecutionContext& ctx,
                              const cnnlTensorDescriptor_t x_desc,
2861 2862 2863
                              const void* x,
                              const void* min,
                              const void* max,
2864 2865 2866 2867 2868 2869
                              void* y) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlClip(handle, x_desc, x, min, max, y));
}

/*static*/ void MLUCnnl::HardtanhBackward(
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t x_desc,
    const void* x,
    const cnnlTensorDescriptor_t diff_y_desc,
    const void* diff_y,
    const float max_val,
    const float min_val,
    const cnnlTensorDescriptor_t diff_x_desc,
    void* diff_x) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlHardtanhBackward(handle,
                                                  x_desc,
                                                  x,
                                                  diff_y_desc,
                                                  diff_y,
                                                  max_val,
                                                  min_val,
                                                  diff_x_desc,
                                                  diff_x));
2889 2890
}

2891
/* static */ void MLUCnnl::PoolingBackward(
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
    const ExecutionContext& ctx,
    const cnnlPoolingDescriptor_t pooling_desc,
    const void* alpha,
    const cnnlTensorDescriptor_t y_desc,
    const void* y,
    const cnnlTensorDescriptor_t diff_y_desc,
    const void* diff_y,
    const cnnlTensorDescriptor_t x_desc,
    const void* x,
    const void* beta,
    const cnnlTensorDescriptor_t diff_x_desc,
    void* diff_x) {
2904 2905
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlPoolingBackward(handle,
                          const_cast<cnnlPoolingDescriptor_t>(pooling_desc),
                          alpha,
                          y_desc,
                          y,
                          diff_y_desc,
                          diff_y,
                          x_desc,
                          x,
                          beta,
                          diff_x_desc,
                          diff_x));
2919 2920
}

2921
/* static */ void MLUCnnl::AdaptivePoolingBackward(
2922 2923 2924 2925 2926 2927 2928 2929
    const ExecutionContext& ctx,
    const cnnlPoolingMode_t pool_mode,
    const cnnlTensorDescriptor_t y_desc,
    const void* y,
    const cnnlTensorDescriptor_t index_desc,
    const void* index,
    const cnnlTensorDescriptor_t diff_x_desc,
    void* diff_x) {
2930 2931 2932 2933 2934 2935
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlAdaptivePoolingBackward(
      handle, y_desc, y, index_desc, index, pool_mode, diff_x_desc, diff_x));
}

2936
/* static */ void MLUCnnl::NonMaxSuppression(
2937 2938 2939 2940 2941 2942 2943 2944 2945
    const ExecutionContext& ctx,
    const cnnlNmsDescriptor_t nms_desc,
    const cnnlTensorDescriptor_t boxes_desc,
    const void* boxes,
    const cnnlTensorDescriptor_t confidence_desc,
    const void* confidence,
    const cnnlTensorDescriptor_t output_desc,
    void* output,
    void* output_size) {
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetNmsWorkspaceSize_v2(handle, confidence_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlNms_v2(handle,
                                        nms_desc,
                                        boxes_desc,
                                        boxes,
                                        confidence_desc,
                                        confidence,
                                        workspace_ptr,
                                        workspace_size,
                                        output_desc,
                                        output,
                                        output_size));
2968 2969 2970
}

/* static */ void MLUCnnl::PoolingIndex(
2971 2972 2973 2974 2975 2976
    const ExecutionContext& ctx,
    const cnnlPoolingDescriptor_t pooling_desc,
    const cnnlTensorDescriptor_t x_desc,
    const void* x,
    const cnnlTensorDescriptor_t y_desc,
    void* y) {
2977 2978
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

2979 2980 2981 2982 2983 2984 2985
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlPoolingIndex(handle,
                       const_cast<cnnlPoolingDescriptor_t>(pooling_desc),
                       x_desc,
                       x,
                       y_desc,
                       y));
2986 2987 2988
}

/* static */ void MLUCnnl::SpaceToBatch(
2989 2990 2991 2992 2993
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t output_desc,
    void* output,
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
    const int64_t block_shape[]) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetSpace2batchWorkspaceSize(
      handle, input_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  cnnlSpaceBatchParam_t param = {static_cast<uint32_t>(block_shape[0]),
                                 static_cast<uint32_t>(block_shape[1])};
3008 3009 3010 3011 3012 3013 3014 3015
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSpace2batch(handle,
                                             input_desc,
                                             input,
                                             output_desc,
                                             output,
                                             param,
                                             workspace_ptr,
                                             workspace_size));
3016 3017 3018
}

/* static */ void MLUCnnl::SpaceToBatchNd(
3019 3020 3021 3022 3023 3024 3025 3026
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    cnnlSpaceBatchNdDescriptor_t param,
    void* extra_device_input,
    size_t extra_host_input,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
3027 3028
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

3029 3030 3031 3032 3033 3034 3035 3036
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSpace2batchNd_v2(handle,
                                                  input_desc,
                                                  input,
                                                  output_desc,
                                                  output,
                                                  param,
                                                  extra_device_input,
                                                  extra_host_input));
3037 3038 3039
}

/* static */ void MLUCnnl::FusedBatchNorm(
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
    const ExecutionContext& ctx,
    const bool is_training,
    const cnnlTensorDescriptor_t x_desc,
    const void* x,
    const cnnlTensorDescriptor_t scale_desc,
    const void* scale,
    const void* offset,
    const void* running_mean_input,
    const void* running_variance_input,
    float epsilon,
    float momentum,
    const cnnlTensorDescriptor_t output_desc,
    void* output,
    void* running_mean_output,
    void* running_var_output,
    void* saved_batch_mean_output,
    void* saved_batch_var_output) {
3057 3058 3059 3060
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  if (is_training) {
    /*
3061
     *  In Paddle, running_mean_output = momentum * runnning_mean_input +
3062 3063 3064 3065
     *  (1 - momentum) * batch_mean. However, In CNNL,
     *  running_mean_output = (1 - momentum) * running_mean_input +
     *  momentum * batch_mean. So we pass (1.0 - momentum) to momentum param.
     */
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
    PADDLE_ENFORCE_MLU_SUCCESS(
        cnnlBatchNormForwardTraining(handle,
                                     NULL,
                                     NULL,
                                     x_desc,
                                     x,
                                     scale_desc,
                                     scale,
                                     offset,
                                     running_mean_output,
                                     running_var_output,
                                     epsilon,
                                     1.0 - momentum,
                                     output_desc,
                                     output,
                                     saved_batch_mean_output,
                                     saved_batch_var_output));
3083
  } else {
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
    PADDLE_ENFORCE_MLU_SUCCESS(
        cnnlBatchNormForwardInference(handle,
                                      NULL,
                                      NULL,
                                      x_desc,
                                      x,
                                      scale_desc,
                                      scale,
                                      offset,
                                      running_mean_input,
                                      running_variance_input,
                                      epsilon,
                                      output_desc,
                                      output));
3098 3099 3100 3101
  }
}

/* static */ void MLUCnnl::FusedBatchNormGrad(
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
    const ExecutionContext& ctx,
    const bool is_training,
    const cnnlTensorDescriptor_t y_backprop_desc,
    const void* y_backprop,
    const cnnlTensorDescriptor_t x_desc,
    const void* x,
    const cnnlTensorDescriptor_t scale_desc,
    const void* scale,
    const void* saved_mean,
    const void* saved_var,
    float epsilon,
    const cnnlTensorDescriptor_t x_backprop_desc,
    void* x_backprop,
    void* scale_backprop,
    void* offset_backprop) {
3117 3118 3119
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  if (is_training) {
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchNormBackward(handle,
                                                     NULL,
                                                     NULL,
                                                     NULL,
                                                     NULL,
                                                     x_desc,
                                                     x,
                                                     y_backprop_desc,
                                                     y_backprop,
                                                     scale_desc,
                                                     scale,
                                                     saved_mean,
                                                     saved_var,
                                                     epsilon,
                                                     x_backprop_desc,
                                                     x_backprop,
                                                     scale_backprop,
                                                     offset_backprop));
3138
  } else {
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlFrozenBatchNormBackward(handle,
                                                           x_desc,
                                                           x,
                                                           y_backprop_desc,
                                                           y_backprop,
                                                           scale_desc,
                                                           scale,
                                                           saved_mean,
                                                           saved_var,
                                                           epsilon,
                                                           x_backprop_desc,
                                                           x_backprop,
                                                           scale_backprop,
                                                           offset_backprop));
3153 3154 3155
  }
}

3156
/* static */ void MLUCnnl::LayerNormForward(
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
    const ExecutionContext& ctx,
    int axis,
    const cnnlTensorDescriptor_t x_desc,
    const void* x,
    const cnnlTensorDescriptor_t weight_bias_desc,
    const void* weight,
    const void* bias,
    float eps,
    const cnnlTensorDescriptor_t y_desc,
    void* y,
    const cnnlTensorDescriptor_t mean_rstd_desc,
    void* saved_mean,
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
    void* saved_rstd) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetLayerNormOpWorkspaceSize(handle, axis, x_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlLayerNormForward(handle,
                                                  x_desc,
                                                  x,
                                                  axis,
                                                  weight_bias_desc,
                                                  weight,
                                                  bias,
                                                  eps,
                                                  workspace_ptr,
                                                  workspace_size,
                                                  y_desc,
                                                  y,
                                                  mean_rstd_desc,
                                                  saved_mean,
                                                  saved_rstd));
3196 3197 3198
}

/* static */ void MLUCnnl::LayerNormBackward(
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
    const ExecutionContext& ctx,
    int axis,
    const cnnlTensorDescriptor_t x_desc,
    const void* x,
    const cnnlTensorDescriptor_t diff_z_desc,
    const void* diff_z,
    const cnnlTensorDescriptor_t weight_bias_desc,
    const void* weight,
    const cnnlTensorDescriptor_t mean_rstd_desc,
    const void* saved_mean,
    const void* saved_rstd,
    const cnnlTensorDescriptor_t diff_x_desc,
    void* diff_x,
    void* diff_weight,
    void* diff_bias) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlLayerNormBackward(handle,
                                                   x_desc,
                                                   x,
                                                   axis,
                                                   diff_z_desc,
                                                   diff_z,
                                                   weight_bias_desc,
                                                   weight,
                                                   mean_rstd_desc,
                                                   saved_mean,
                                                   saved_rstd,
                                                   diff_x_desc,
                                                   diff_x,
                                                   diff_weight,
                                                   diff_bias));
3231 3232
}

3233
/* static */ void MLUCnnl::QuantizeParam(
3234 3235 3236 3237 3238 3239 3240 3241
    const ExecutionContext& ctx,
    const cnnlQuantizeMode_t mode,
    const int bitwidth,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    void* position,
    void* scale,
    void* offset) {
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetQuantizeParamWorkspaceSize(handle, input_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlQuantizeParam(handle,
                                               mode,
                                               input_desc,
                                               input,
                                               bitwidth,
                                               workspace_ptr,
                                               workspace_size,
                                               position,
                                               scale,
                                               offset));
}

/* static */ void MLUCnnl::Conv2D(const ExecutionContext& ctx,
                                  const cnnlConvolutionDescriptor_t conv_desc,
                                  const cnnlDataType_t tensor_dtype,
                                  const cnnlDataType_t dt_onchip,
                                  const void* input_position,
                                  const void* input_scale,
                                  const void* input_offset,
                                  const void* filter_position,
                                  const void* filter_scale,
                                  const void* filter_offset,
                                  const cnnlTensorDescriptor_t input_desc,
                                  const void* input,
                                  const cnnlTensorDescriptor_t filter_desc,
                                  const void* filter,
                                  const cnnlTensorDescriptor_t bias_desc,
                                  const void* bias,
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(input_desc, dt_onchip));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(filter_desc, dt_onchip));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(output_desc, tensor_dtype));

  cnnlConvolutionForwardAlgo_t algo;
  const cnnlConvolutionFwdPreference_t preference =
      CNNL_CONVOLUTION_FWD_FASTEST;
3295 3296 3297 3298 3299 3300 3301
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetConvolutionForwardAlgorithm(handle,
                                                                conv_desc,
                                                                input_desc,
                                                                filter_desc,
                                                                output_desc,
                                                                preference,
                                                                &algo));
3302 3303

  size_t workspace_size = 0;
3304 3305 3306 3307 3308 3309 3310 3311 3312
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionForwardWorkspaceSize(handle,
                                             input_desc,
                                             filter_desc,
                                             output_desc,
                                             bias_desc,
                                             conv_desc,
                                             algo,
                                             &workspace_size));
3313 3314 3315 3316 3317 3318

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlQuantizeConvolutionForward(handle,
                                                            conv_desc,
                                                            algo,
                                                            nullptr /*alpha*/,
                                                            input_desc,
                                                            input,
                                                            input_position,
                                                            input_scale,
                                                            input_offset,
                                                            filter_desc,
                                                            filter,
                                                            filter_position,
                                                            filter_scale,
                                                            filter_offset,
                                                            bias_desc,
                                                            bias,
                                                            workspace_ptr,
                                                            workspace_size,
                                                            nullptr /*beta*/,
                                                            output_desc,
                                                            output));
3340 3341 3342
}

/* static */ void MLUCnnl::FusedConvBNQuantify(
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
    const ExecutionContext& ctx,
    cnnlConvolutionDescriptor_t conv_desc,
    const void* epsilon_ptr,
    const int fused_ops_number,
    const cnnlDataType_t tensor_dtype,
    const int input_position,
    const float input_scale,
    const int filter_position,
    const float filter_scale,
    const cnnlTensorDescriptor_t scale_desc,
    const void* scale_ptr,
    const cnnlTensorDescriptor_t offset_desc,
    const void* offset_ptr,
    const cnnlTensorDescriptor_t mean_desc,
    const void* mean_ptr,
    const cnnlTensorDescriptor_t variance_desc,
    const void* variance_ptr,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t filter_desc,
    const void* filter,
    const cnnlTensorDescriptor_t output_desc,
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(input_desc, CNNL_DTYPE_INT16));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(filter_desc, CNNL_DTYPE_INT16));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(output_desc, tensor_dtype));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptorPositionAndScale(
      input_desc, input_position, input_scale));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptorPositionAndScale(
      filter_desc, filter_position, filter_scale));

  cnnlFusedOpsPlan_t fusion_plan = nullptr;
  cnnlActivationDescriptor_t active_desc = nullptr;
  cnnlFusedOpsConstParamPack_t cparam_pack = nullptr;
  cnnlFusedOpsVariantParamPack_t vparam_pack = nullptr;
  cnnlConvolutionForwardAlgo_t algo;
  cnnlFusedOps_t fusion_type = CNNL_CONV_SCALE_BN_ACTIVATION;
  cnnlConvolutionCastMode_t cast_mode = CNNL_OFFLINE_SYMMETRIC_QUANTIZE;
  cnnlConvolutionFwdPreference_t preference = CNNL_CONVOLUTION_FWD_FASTEST;

3388 3389 3390 3391 3392 3393 3394
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetConvolutionForwardAlgorithm(handle,
                                                                conv_desc,
                                                                input_desc,
                                                                filter_desc,
                                                                output_desc,
                                                                preference,
                                                                &algo));
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateFusedOpsPlan(&fusion_plan, fusion_type));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlCreateFusedOpsConstParamPack(&cparam_pack, fusion_type));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlCreateFusedOpsVariantParamPack(&vparam_pack, fusion_type));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_XDESC, input_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetFusedOpsVariantParamPackAttribute(vparam_pack, CNNL_PTR_X, input));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_WDESC, filter_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
      vparam_pack, CNNL_PTR_W, filter));

  if (fused_ops_number > 1) {
    cnnlCreateActivationDescriptor(&active_desc);
    cnnlNanPropagation_t nan_opt = CNNL_NOT_PROPAGATE_NAN;
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetActivationDescriptor(
        active_desc, CNNL_ACTIVATION_RELU, nan_opt, 0.0));
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
        cparam_pack, CNNL_ACTIVATION_DESC, active_desc));
  }
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_BN_WEIGHT_BIAS_MEAN_VAR_DESC, scale_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
      vparam_pack, CNNL_PTR_BN_WEIGHT, scale_ptr));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_BN_WEIGHT_BIAS_MEAN_VAR_DESC, offset_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
      vparam_pack, CNNL_PTR_BN_BIAS, offset_ptr));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_BN_WEIGHT_BIAS_MEAN_VAR_DESC, mean_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
      vparam_pack, CNNL_PTR_BN_MEAN, mean_ptr));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_BN_WEIGHT_BIAS_MEAN_VAR_DESC, variance_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
      vparam_pack, CNNL_PTR_BN_VAR, variance_ptr));

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_CONV_DESC, conv_desc));

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_SCALAR_CONV_FWD_ALGO, &algo));

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_SCALAR_CONV_FWD_CAST_MODE, &cast_mode));

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
      vparam_pack, CNNL_SCALAR_BN_EPSILON, epsilon_ptr));

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsConstParamPackAttribute(
      cparam_pack, CNNL_YDESC, output_desc));

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
      vparam_pack, CNNL_PTR_Y, output));

  // get workspace size
  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlMakeFusedOpsPlan(handle, fusion_plan, cparam_pack, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  if (workspace_size > 0) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
        vparam_pack, CNNL_PTR_WORKSPACE, workspace_ptr));
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetFusedOpsVariantParamPackAttribute(
        vparam_pack, CNNL_SCALAR_WORKSPACE_SIZE, &workspace_size));
  }
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlFusedOpsExecute(handle, fusion_plan, vparam_pack));

  if (active_desc) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyActivationDescriptor(active_desc));
  }

  if (cparam_pack) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyFusedOpsConstParamPack(cparam_pack));
  }

  if (vparam_pack) {
    PADDLE_ENFORCE_MLU_SUCCESS(
        cnnlDestroyFusedOpsVariantParamPack(vparam_pack));
  }

  if (fusion_plan) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyFusedOpsPlan(fusion_plan));
  }
}

/* static */ void MLUCnnl::ConvBackpropInput(
3490 3491 3492 3493 3494 3495 3496 3497
    const ExecutionContext& ctx,
    const cnnlConvolutionDescriptor_t conv_desc,
    const cnnlTensorDescriptor_t filter_desc,
    const void* filter,
    const cnnlTensorDescriptor_t out_backprop_desc,
    const void* out_backprop,
    const cnnlTensorDescriptor_t in_backprop_desc,
    void* in_backprop) {
3498 3499 3500 3501 3502
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  cnnlConvolutionBwdDataAlgo_t algo;
  const cnnlConvolutionBwdDataPreference_t preference =
      CNNL_CONVOLUTION_BWD_DATA_FASTEST;
3503 3504 3505 3506 3507 3508 3509 3510
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionBackwardDataAlgorithm(handle,
                                              filter_desc,
                                              out_backprop_desc,
                                              conv_desc,
                                              in_backprop_desc,
                                              preference,
                                              &algo));
3511 3512

  size_t workspace_size = 0;
3513 3514 3515 3516 3517 3518 3519 3520
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionBackwardDataWorkspaceSize(handle,
                                                  filter_desc,
                                                  out_backprop_desc,
                                                  conv_desc,
                                                  in_backprop_desc,
                                                  algo,
                                                  &workspace_size));
3521 3522 3523 3524 3525 3526

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlConvolutionBackwardData(handle,
                                                         nullptr /*alpha*/,
                                                         filter_desc,
                                                         filter,
                                                         out_backprop_desc,
                                                         out_backprop,
                                                         conv_desc,
                                                         algo,
                                                         workspace_ptr,
                                                         workspace_size,
                                                         nullptr /*beta*/,
                                                         in_backprop_desc,
                                                         in_backprop));
3540 3541 3542
}

/* static */ void MLUCnnl::QuantizeConvBackpropInput(
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
    const ExecutionContext& ctx,
    const cnnlConvolutionDescriptor_t conv_desc,
    const cnnlDataType_t tensor_dtype,
    const cnnlDataType_t dt_onchip,
    const void* filter_position,
    const void* filter_scale,
    const void* filter_offset,
    const void* out_backprop_position,
    const void* out_backprop_scale,
    const void* out_backprop_offset,
    const cnnlTensorDescriptor_t filter_desc,
    const void* filter,
    const cnnlTensorDescriptor_t out_backprop_desc,
    const void* out_backprop,
    const cnnlTensorDescriptor_t in_backprop_desc,
    void* in_backprop) {
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(filter_desc, dt_onchip));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(out_backprop_desc, dt_onchip));

  cnnlConvolutionBwdDataAlgo_t algo;
  const cnnlConvolutionBwdDataPreference_t preference =
      CNNL_CONVOLUTION_BWD_DATA_FASTEST;
3569 3570 3571 3572 3573 3574 3575 3576
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionBackwardDataAlgorithm(handle,
                                              filter_desc,
                                              out_backprop_desc,
                                              conv_desc,
                                              in_backprop_desc,
                                              preference,
                                              &algo));
3577 3578

  size_t workspace_size = 0;
3579 3580 3581 3582 3583 3584 3585 3586
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionBackwardDataWorkspaceSize(handle,
                                                  filter_desc,
                                                  out_backprop_desc,
                                                  conv_desc,
                                                  in_backprop_desc,
                                                  algo,
                                                  &workspace_size));
3587 3588 3589 3590 3591 3592

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlQuantizeConvolutionBackwardData(handle,
                                          nullptr /*alpha*/,
                                          filter_desc,
                                          filter,
                                          filter_position,
                                          filter_scale,
                                          filter_offset,
                                          out_backprop_desc,
                                          out_backprop,
                                          out_backprop_position,
                                          out_backprop_scale,
                                          out_backprop_offset,
                                          conv_desc,
                                          algo,
                                          workspace_ptr,
                                          workspace_size,
                                          nullptr /*beta*/,
                                          in_backprop_desc,
                                          in_backprop));
3613 3614 3615
}

/* static */ void MLUCnnl::ConvBackpropFilter(
3616 3617 3618 3619 3620 3621 3622 3623
    const ExecutionContext& ctx,
    const cnnlConvolutionDescriptor_t conv_desc,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t out_backprop_desc,
    const void* out_backprop,
    const cnnlTensorDescriptor_t filter_backprop_desc,
    void* filter_backprop) {
3624 3625 3626 3627 3628
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  cnnlConvolutionBwdFilterAlgo_t algo;
  const cnnlConvolutionBwdFilterPreference_t preference =
      CNNL_CONVOLUTION_BWD_FILTER_FASTEST;
3629 3630 3631 3632 3633 3634 3635 3636
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionBackwardFilterAlgorithm(handle,
                                                conv_desc,
                                                input_desc,
                                                out_backprop_desc,
                                                filter_backprop_desc,
                                                preference,
                                                &algo));
3637 3638

  size_t workspace_size = 0;
3639 3640 3641 3642 3643 3644 3645 3646
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionBackwardFilterWorkspaceSize(handle,
                                                    input_desc,
                                                    out_backprop_desc,
                                                    filter_backprop_desc,
                                                    conv_desc,
                                                    algo,
                                                    &workspace_size));
3647 3648 3649 3650 3651 3652

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlConvolutionBackwardFilter(handle,
                                                           nullptr /*alpha*/,
                                                           input_desc,
                                                           input,
                                                           out_backprop_desc,
                                                           out_backprop,
                                                           conv_desc,
                                                           algo,
                                                           workspace_ptr,
                                                           workspace_size,
                                                           nullptr /*beta*/,
                                                           filter_backprop_desc,
                                                           filter_backprop));
3666 3667 3668
}

/* static */ void MLUCnnl::QuantizeConvBackpropFilter(
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
    const ExecutionContext& ctx,
    const cnnlConvolutionDescriptor_t conv_desc,
    const cnnlDataType_t tensor_dtype,
    const cnnlDataType_t dt_onchip,
    const void* input_position,
    const void* input_scale,
    const void* input_offset,
    const void* out_backprop_position,
    const void* out_backprop_scale,
    const void* out_backprop_offset,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t out_backprop_desc,
    const void* out_backprop,
    const cnnlTensorDescriptor_t filter_backprop_desc,
    void* filter_backprop) {
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(input_desc, dt_onchip));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTensorDescriptorOnchipDataType(out_backprop_desc, dt_onchip));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetTensorDescriptorOnchipDataType(
      filter_backprop_desc, tensor_dtype));

  cnnlConvolutionBwdFilterAlgo_t algo;
  const cnnlConvolutionBwdFilterPreference_t preference =
      CNNL_CONVOLUTION_BWD_FILTER_FASTEST;
3697 3698 3699 3700 3701 3702 3703 3704
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionBackwardFilterAlgorithm(handle,
                                                conv_desc,
                                                input_desc,
                                                out_backprop_desc,
                                                filter_backprop_desc,
                                                preference,
                                                &algo));
3705 3706

  size_t workspace_size = 0;
3707 3708 3709 3710 3711 3712 3713 3714
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetConvolutionBackwardFilterWorkspaceSize(handle,
                                                    input_desc,
                                                    out_backprop_desc,
                                                    filter_backprop_desc,
                                                    conv_desc,
                                                    algo,
                                                    &workspace_size));
3715 3716 3717 3718 3719 3720

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlQuantizeConvolutionBackwardFilter(handle,
                                            nullptr /*alpha*/,
                                            input_desc,
                                            input,
                                            input_position,
                                            input_scale,
                                            input_offset,
                                            out_backprop_desc,
                                            out_backprop,
                                            out_backprop_position,
                                            out_backprop_scale,
                                            out_backprop_offset,
                                            conv_desc,
                                            algo,
                                            workspace_ptr,
                                            workspace_size,
                                            nullptr /*beta*/,
                                            filter_backprop_desc,
                                            filter_backprop));
}

/* static */ void MLUCnnl::DCNForward(const ExecutionContext& ctx,
                                      const cnnlDCNDescriptor_t dcn_desc,
                                      const cnnlTensorDescriptor_t input_desc,
                                      const void* input,
                                      const cnnlTensorDescriptor_t offset_desc,
                                      const void* offset,
                                      const cnnlTensorDescriptor_t mask_desc,
                                      const void* mask,
                                      const cnnlTensorDescriptor_t weight_desc,
                                      const void* weight,
                                      const cnnlTensorDescriptor_t bias_desc,
                                      const void* bias,
                                      const cnnlTensorDescriptor_t output_desc,
                                      void* output) {
3757 3758 3759
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
3760 3761 3762 3763 3764 3765 3766 3767 3768
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetDCNForwardWorkspaceSize(handle,
                                                            dcn_desc,
                                                            input_desc,
                                                            offset_desc,
                                                            mask_desc,
                                                            weight_desc,
                                                            bias_desc,
                                                            output_desc,
                                                            &workspace_size));
3769 3770 3771 3772 3773 3774

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlDCNForward(handle,
                                            dcn_desc,
                                            input_desc,
                                            input,
                                            offset_desc,
                                            offset,
                                            mask_desc,
                                            mask,
                                            weight_desc,
                                            weight,
                                            bias_desc,
                                            bias,
                                            workspace_ptr,
                                            workspace_size,
                                            output_desc,
                                            output));
3791 3792 3793
}

/* static */ void MLUCnnl::DCNBackwardData(
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
    const ExecutionContext& ctx,
    const cnnlDCNDescriptor_t dcn_desc,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t offset_desc,
    const void* offset,
    const cnnlTensorDescriptor_t mask_desc,
    const void* mask,
    const cnnlTensorDescriptor_t weight_desc,
    const void* weight,
    const cnnlTensorDescriptor_t grad_output_desc,
    const void* grad_output,
    const cnnlTensorDescriptor_t grad_input_desc,
    void* grad_input,
    const cnnlTensorDescriptor_t grad_offset_desc,
    void* grad_offset,
    const cnnlTensorDescriptor_t grad_mask_desc,
    void* grad_mask) {
3812 3813 3814
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetDCNBakcwardDataWorkspaceSize(handle,
                                          dcn_desc,
                                          input_desc,
                                          offset_desc,
                                          mask_desc,
                                          weight_desc,
                                          grad_output_desc,
                                          grad_input_desc,
                                          grad_offset_desc,
                                          grad_mask_desc,
                                          &workspace_size));
3827 3828 3829 3830 3831 3832

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlDCNBackwardData(handle,
                                                 dcn_desc,
                                                 input_desc,
                                                 input,
                                                 offset_desc,
                                                 offset,
                                                 mask_desc,
                                                 mask,
                                                 weight_desc,
                                                 weight,
                                                 grad_output_desc,
                                                 grad_output,
                                                 workspace_ptr,
                                                 workspace_size,
                                                 grad_input_desc,
                                                 grad_input,
                                                 grad_offset_desc,
                                                 grad_offset,
                                                 grad_mask_desc,
                                                 grad_mask));
3853 3854 3855
}

/* static */ void MLUCnnl::DCNBackwardWeight(
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
    const ExecutionContext& ctx,
    const cnnlDCNDescriptor_t dcn_desc,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t offset_desc,
    const void* offset,
    const cnnlTensorDescriptor_t mask_desc,
    const void* mask,
    const cnnlTensorDescriptor_t grad_output_desc,
    const void* grad_output,
    const cnnlTensorDescriptor_t grad_weight_desc,
    void* grad_weight,
    const cnnlTensorDescriptor_t grad_bias_desc,
    void* grad_bias) {
3870 3871 3872
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetDCNBackwardWeightWorkspaceSize(handle,
                                            dcn_desc,
                                            input_desc,
                                            offset_desc,
                                            mask_desc,
                                            grad_output_desc,
                                            grad_weight_desc,
                                            grad_bias_desc,
                                            &workspace_size));
3883 3884 3885 3886 3887 3888

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlDCNBackwardWeight(handle,
                                                   dcn_desc,
                                                   input_desc,
                                                   input,
                                                   offset_desc,
                                                   offset,
                                                   mask_desc,
                                                   mask,
                                                   grad_output_desc,
                                                   grad_output,
                                                   workspace_ptr,
                                                   workspace_size,
                                                   grad_weight_desc,
                                                   grad_weight,
                                                   grad_bias_desc,
                                                   grad_bias));
3905 3906
}

3907
/* static */ void MLUCnnl::QuantizeMatMul(
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
    const ExecutionContext& ctx,
    const bool transpose_a,
    const bool transpose_b,
    const cnnlTensorDescriptor_t a_desc,
    const void* a,
    const void* a_position,
    const void* a_scale,
    const void* a_offset,
    const cnnlTensorDescriptor_t b_desc,
    const void* b,
    const void* b_position,
    const void* b_scale,
    const void* b_offset,
    const cnnlDataType_t quant_type,
    const cnnlDataType_t data_type,
    const cnnlTensorDescriptor_t output_desc,
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
    void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  // Set onchip data type
  cnnlSetTensorDescriptorOnchipDataType(a_desc, quant_type);
  cnnlSetTensorDescriptorOnchipDataType(b_desc, quant_type);
  cnnlSetTensorDescriptorOnchipDataType(output_desc, data_type);

  // Create and set matmul descriptor
  cnnlMatMulDescriptor_t matmul_desc;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMatMulDescCreate(&matmul_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetMatMulDescAttr(
      matmul_desc, CNNL_MATMUL_DESC_COMPUTE_TYPE, &data_type, sizeof(int)));
  int transpose_a_int = static_cast<int>(transpose_a);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetMatMulDescAttr(
      matmul_desc, CNNL_MATMUL_DESC_TRANSA, &(transpose_a_int), sizeof(int)));
  int transpose_b_int = static_cast<int>(transpose_b);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetMatMulDescAttr(
      matmul_desc, CNNL_MATMUL_DESC_TRANSB, &(transpose_b_int), sizeof(int)));

  // Create and get matmul algorithim
  cnnlMatMulAlgo_t algo;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMatMulAlgoCreate(&algo));
  const cnnlMatMulPreference_t preference = CNNL_MATMUL_FASTEST;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetQuantizeMatMulAlgorithm(
      handle, matmul_desc, a_desc, b_desc, output_desc, preference, &algo));

  // Get workspace
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetQuantizeMatMulWorkspaceSize(
      handle, matmul_desc, a_desc, b_desc, output_desc, algo, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  // Compute
  float alpha = 1.0;
  float beta = 0.0;
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlQuantizeMatMul(handle,
                                                matmul_desc,
                                                reinterpret_cast<void*>(&alpha),
                                                a_desc,
                                                a,
                                                a_position,
                                                a_scale,
                                                a_offset,
                                                b_desc,
                                                b,
                                                b_position,
                                                b_scale,
                                                b_offset,
                                                reinterpret_cast<void*>(&beta),
                                                output_desc,
                                                output,
                                                algo,
                                                workspace_ptr,
                                                workspace_size));
3983 3984 3985 3986 3987 3988 3989

  // Destroy matmul descriptor and algorithim
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMatMulDescDestroy(matmul_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMatMulAlgoDestroy(algo));
}

/* static */ void MLUCnnl::QuantizeBatchMatMul(
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
    const ExecutionContext& ctx,
    const bool adj_x,
    const bool adj_y,
    const cnnlTensorDescriptor_t in0_desc,
    const void* in0,
    const void* in0_position,
    const void* in0_scale,
    const void* in0_offset,
    const cnnlTensorDescriptor_t in1_desc,
    const void* in1,
    const void* in1_position,
    const void* in1_scale,
    const void* in1_offset,
    const cnnlDataType_t quant_type,
    const cnnlDataType_t data_type,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  // Set onchip data type
  cnnlSetTensorDescriptorOnchipDataType(in0_desc, quant_type);
  cnnlSetTensorDescriptorOnchipDataType(in1_desc, quant_type);
  cnnlSetTensorDescriptorOnchipDataType(output_desc, data_type);

  // Create and set batch matmul descriptor
  cnnlBatchMatMulDescriptor_t bmm_desc;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulDescCreate(&bmm_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetBatchMatMulDescAttr(
      bmm_desc, CNNL_BMM_DESC_COMPUTE_TYPE, &data_type, sizeof(int)));
  int transpose_a_int = static_cast<int>(adj_x);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetBatchMatMulDescAttr(
      bmm_desc, CNNL_BMM_DESC_TRANSA, &(transpose_a_int), sizeof(int)));
  int transpose_b_int = static_cast<int>(adj_y);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetBatchMatMulDescAttr(
      bmm_desc, CNNL_BMM_DESC_TRANSB, &(transpose_b_int), sizeof(int)));

  // Create and get batch matmul algorithim
  cnnlBatchMatMulAlgo_t algo;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulAlgoCreate(&algo));
  const cnnlBatchMatMulPreference_t preference = CNNL_BMM_FASTEST;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetQuantizeBatchMatMulAlgorithm(
      handle, bmm_desc, in0_desc, in1_desc, output_desc, preference, &algo));

  // Get workspace
  size_t workspace_size;
4035 4036 4037 4038 4039 4040 4041 4042
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetQuantizeBatchMatMulWorkspaceSize(handle,
                                              bmm_desc,
                                              in0_desc,
                                              in1_desc,
                                              output_desc,
                                              algo,
                                              &workspace_size));
4043 4044 4045 4046 4047 4048 4049 4050 4051

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  // Compute
  float alpha = 1.0;
  float beta = 0.0;
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlQuantizeBatchMatMul(handle,
                              bmm_desc,
                              reinterpret_cast<void*>(&alpha),
                              in0_desc,
                              in0,
                              in0_position,
                              in0_scale,
                              in0_offset,
                              in1_desc,
                              in1,
                              in1_position,
                              in1_scale,
                              in1_offset,
                              reinterpret_cast<void*>(&beta),
                              output_desc,
                              output,
                              algo,
                              workspace_ptr,
                              workspace_size));
4072 4073 4074 4075 4076 4077 4078

  // Destroy matmul descriptor and algorithim
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulDescDestroy(bmm_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulAlgoDestroy(algo));
}

/* static */ void MLUCnnl::QuantizeBatchMatMulBCast(
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
    const ExecutionContext& ctx,
    const bool adj_x,
    const bool adj_y,
    const cnnlTensorDescriptor_t in0_desc,
    const void* in0,
    const void* in0_position,
    const void* in0_scale,
    const void* in0_offset,
    const cnnlTensorDescriptor_t in1_desc,
    const void* in1,
    const void* in1_position,
    const void* in1_scale,
    const void* in1_offset,
    const cnnlDataType_t quant_type,
    const cnnlDataType_t data_type,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  // Set onchip data type
  cnnlSetTensorDescriptorOnchipDataType(in0_desc, quant_type);
  cnnlSetTensorDescriptorOnchipDataType(in1_desc, quant_type);
  cnnlSetTensorDescriptorOnchipDataType(output_desc, data_type);

  // Create and set batch matmul descriptor
  cnnlBatchMatMulBCastDescriptor_t bmm_bcast_desc;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulBCastDescCreate(&bmm_bcast_desc));
4106 4107 4108 4109 4110
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetBatchMatMulBCastDescAttr(bmm_bcast_desc,
                                      CNNL_BMM_BCAST_DESC_COMPUTE_TYPE,
                                      &data_type,
                                      sizeof(int)));
4111
  int transpose_a_int = static_cast<int>(adj_x);
4112 4113 4114 4115 4116
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetBatchMatMulBCastDescAttr(bmm_bcast_desc,
                                      CNNL_BMM_BCAST_DESC_TRANSA,
                                      &(transpose_a_int),
                                      sizeof(int)));
4117
  int transpose_b_int = static_cast<int>(adj_y);
4118 4119 4120 4121 4122
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetBatchMatMulBCastDescAttr(bmm_bcast_desc,
                                      CNNL_BMM_BCAST_DESC_TRANSB,
                                      &(transpose_b_int),
                                      sizeof(int)));
4123 4124 4125 4126 4127

  // Create and get batch matmul algorithim
  cnnlBatchMatMulBCastAlgo_t algo;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulBCastAlgoCreate(&algo));
  const cnnlBatchMatMulBCastPreference_t preference = CNNL_BMM_BCAST_FASTEST;
4128 4129 4130 4131 4132 4133 4134 4135
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetQuantizeBatchMatMulBCastAlgorithm(handle,
                                               bmm_bcast_desc,
                                               in0_desc,
                                               in1_desc,
                                               output_desc,
                                               preference,
                                               &algo));
4136 4137 4138

  // Get workspace
  size_t workspace_size;
4139 4140 4141 4142 4143 4144 4145 4146
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetQuantizeBatchMatMulBCastWorkspaceSize(handle,
                                                   bmm_bcast_desc,
                                                   in0_desc,
                                                   in1_desc,
                                                   output_desc,
                                                   algo,
                                                   &workspace_size));
4147 4148 4149 4150 4151 4152 4153 4154 4155

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  // Compute
  float alpha = 1.0;
  float beta = 0.0;
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlQuantizeBatchMatMulBCast(handle,
                                   bmm_bcast_desc,
                                   reinterpret_cast<void*>(&alpha),
                                   in0_desc,
                                   in0,
                                   in0_position,
                                   in0_scale,
                                   in0_offset,
                                   in1_desc,
                                   in1,
                                   in1_position,
                                   in1_scale,
                                   in1_offset,
                                   reinterpret_cast<void*>(&beta),
                                   output_desc,
                                   output,
                                   algo,
                                   workspace_ptr,
                                   workspace_size));
4176 4177 4178 4179 4180 4181

  // Destroy matmul descriptor and algorithim
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulBCastDescDestroy(bmm_bcast_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBatchMatMulBCastAlgoDestroy(algo));
}

4182 4183 4184 4185 4186 4187 4188
/* static */ void MLUCnnl::Transpose(const ExecutionContext& ctx,
                                     const std::vector<int> perm,
                                     const int input_dim,
                                     const cnnlTensorDescriptor_t input_desc,
                                     const void* input,
                                     const cnnlTensorDescriptor_t output_desc,
                                     void* output) {
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  cnnlTransposeDescriptor_t perm_desc;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateTransposeDescriptor(&perm_desc));
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlSetTransposeDescriptor(perm_desc, input_dim, perm.data()));

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetTransposeWorkspaceSize(
      handle, input_desc, perm_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

4204 4205 4206 4207 4208 4209 4210 4211
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlTranspose_v2(handle,
                                              perm_desc,
                                              input_desc,
                                              input,
                                              output_desc,
                                              output,
                                              workspace_ptr,
                                              workspace_size));
4212 4213 4214 4215 4216
  if (perm_desc) {
    PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyTransposeDescriptor(perm_desc));
  }
}

4217 4218 4219 4220 4221 4222 4223
/* static */ void MLUCnnl::TrilTriu(const ExecutionContext& ctx,
                                    const int diagonal_k,
                                    const bool tri_up_mode,
                                    const cnnlTensorDescriptor_t input_desc,
                                    const void* input,
                                    const cnnlTensorDescriptor_t output_desc,
                                    void* output) {
4224
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
4225 4226
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlTri(
      handle, diagonal_k, tri_up_mode, input_desc, input, output_desc, output));
4227 4228
}

4229
/* static */ void MLUCnnl::MatrixBandPart(
4230 4231 4232 4233 4234 4235
    const ExecutionContext& ctx,
    const cnnlTensorDescriptor_t data_desc,
    const void* input,
    const int num_lower,
    const int num_upper,
    void* output) {
4236 4237
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

4238 4239
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMatrixBandPart(
      handle, data_desc, input, num_lower, num_upper, output));
4240 4241 4242 4243
}

/* static */ void MLUCnnl::NumTrue(const ExecutionContext& ctx,
                                   const cnnlTensorDescriptor_t x_desc,
4244 4245
                                   const void* x,
                                   Tensor index,
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
                                   uint32_t* num_true) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size = 0;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetNumTrueWorkspaceSize(handle, x_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  index = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* index_ptr = index.mutable_data(ctx.GetPlace());

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlNumTrue(
      handle, x_desc, x, static_cast<uint32_t*>(index_ptr), num_true));
}

/* static */ void MLUCnnl::Where(const ExecutionContext& ctx,
                                 const cnnlTensorDescriptor_t x_desc,
4264
                                 const void* x,
4265 4266 4267
                                 const cnnlTensorDescriptor_t num_true_desc,
                                 const void* num_true,
                                 const bool as_tuple,
4268
                                 const cnnlTensorDescriptor_t y_desc,
4269
                                 void* y) {
4270
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
4271
  size_t workspace_size;
4272
  PADDLE_ENFORCE_MLU_SUCCESS(
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
      cnnlGetWhereWorkspaceSize(handle, num_true_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlWhere_v2(handle,
                                          x_desc,
                                          x,
                                          num_true_desc,
                                          num_true,
                                          as_tuple,
                                          workspace_ptr,
                                          workspace_size,
                                          y_desc,
                                          y));
4290 4291
}

4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
/* static */ void MLUCnnl::InTopK(const ExecutionContext& ctx,
                                  const cnnlTensorDescriptor_t predictions_desc,
                                  const void* predictions,
                                  const cnnlTensorDescriptor_t targets_desc,
                                  const void* targets,
                                  const cnnlTensorDescriptor_t k_desc,
                                  const void* k,
                                  const int k_int,
                                  const cnnlTensorDescriptor_t output_desc,
                                  void* output) {
4302
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlInTopK(handle,
                                        predictions_desc,
                                        predictions,
                                        targets_desc,
                                        targets,
                                        k_desc,
                                        k,
                                        k_int,
                                        output_desc,
                                        output));
4313 4314
}

4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
/* static */ void MLUCnnl::ScatterNd(const ExecutionContext& ctx,
                                     cnnlScatterNdMode_t mode,
                                     const cnnlTensorDescriptor_t indices_desc,
                                     const void* indices,
                                     const cnnlTensorDescriptor_t updates_desc,
                                     const void* updates,
                                     const cnnlTensorDescriptor_t input_desc,
                                     const void* input,
                                     const cnnlTensorDescriptor_t output_desc,
                                     void* output) {
4325
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlScatterNd_v2(handle,
                                              mode,
                                              indices_desc,
                                              indices,
                                              updates_desc,
                                              updates,
                                              input_desc,
                                              input,
                                              output_desc,
                                              output));
4336 4337
}

4338 4339 4340 4341 4342 4343 4344 4345
/* static */ void MLUCnnl::BitWise(const ExecutionContext& ctx,
                                   const cnnlBitComputeOp_t optype,
                                   const cnnlTensorDescriptor_t input1_desc,
                                   const void* input1,
                                   const cnnlTensorDescriptor_t input2_desc,
                                   const void* input2,
                                   const cnnlTensorDescriptor_t output_desc,
                                   void* output) {
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetBitComputeWorkspaceSize(
      handle, input1_desc, input2_desc, output_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBitCompute_v2(handle,
                                               optype,
                                               input1_desc,
                                               input1,
                                               input2_desc,
                                               input2,
                                               output_desc,
                                               output,
                                               workspace_ptr,
                                               workspace_size));
4366 4367 4368 4369 4370
}

/* static */ void MLUCnnl::QR(const ExecutionContext& ctx,
                              const cnnlTensorDescriptor_t a_desc,
                              const void* a,
4371 4372 4373 4374
                              const cnnlTensorDescriptor_t q_desc,
                              void* q,
                              const cnnlTensorDescriptor_t r_desc,
                              void* r,
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
                              const bool some) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlGetQRWorkspaceSize(handle, a_desc, some, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlQR(handle,
                                    a_desc,
                                    a,
                                    q_desc,
                                    q,
                                    r_desc,
                                    r,
                                    workspace_ptr,
                                    workspace_size,
                                    some));
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
}

/* static */ void MLUCnnl::Reciprocal(const ExecutionContext& ctx,
                                      const cnnlTensorDescriptor_t input_desc,
                                      const void* input,
                                      const cnnlTensorDescriptor_t output_desc,
                                      void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_MLU_SUCCESS(
      cnnlReciprocal(handle, input_desc, input, output_desc, output));
4407 4408
}

4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
/* static */ void MLUCnnl::BceLoss(const ExecutionContext& ctx,
                                   const cnnlBceLossReduction_t reduction,
                                   const cnnlTensorDescriptor_t input_desc,
                                   const void* input,
                                   const cnnlTensorDescriptor_t target_desc,
                                   const void* target,
                                   const cnnlTensorDescriptor_t weight_desc,
                                   const void* weight,
                                   const cnnlTensorDescriptor_t output_desc,
                                   void* output) {
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetBceLossWorkspaceSize(
      handle, input_desc, weight_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBceLoss(handle,
                                         input_desc,
                                         input,
                                         target_desc,
                                         target,
                                         weight_desc,
                                         weight,
                                         reduction,
                                         workspace_ptr,
                                         workspace_size,
                                         output_desc,
                                         output));
4442 4443 4444
}

/* static */ void MLUCnnl::BceLossBackward(
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
    const ExecutionContext& ctx,
    const cnnlBceLossReduction_t reduction,
    const cnnlTensorDescriptor_t grad_desc,
    const void* grad,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t target_desc,
    const void* target,
    const cnnlTensorDescriptor_t weight_desc,
    const void* weight,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetBceLossBackwardWorkspaceSize(
      handle, target_desc, weight_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBceLossBackward(handle,
                                                 grad_desc,
                                                 grad,
                                                 input_desc,
                                                 input,
                                                 target_desc,
                                                 target,
                                                 weight_desc,
                                                 weight,
                                                 reduction,
                                                 workspace_ptr,
                                                 workspace_size,
                                                 output_desc,
                                                 output));
4482 4483
}

4484
/* static */ void MLUCnnl::EmbeddingForward(
4485 4486 4487 4488 4489 4490 4491 4492
    const ExecutionContext& ctx,
    const int padding_idx,
    const cnnlTensorDescriptor_t weight_desc,
    const void* weight,
    const cnnlTensorDescriptor_t indices_desc,
    const int* indices,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
4493 4494
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlEmbeddingForward_v2(handle,
                                                     weight_desc,
                                                     weight,
                                                     indices_desc,
                                                     indices,
                                                     padding_idx,
                                                     nullptr /*max_norm*/,
                                                     nullptr /*norm_type*/,
                                                     output_desc,
                                                     output));
4505 4506
}

4507
/* static */ void MLUCnnl::Transform(const ExecutionContext& ctx,
4508 4509
                                     const void* alpha,
                                     const void* beta,
4510 4511 4512 4513 4514 4515 4516
                                     const cnnlTensorDescriptor_t input_desc,
                                     const void* input,
                                     const cnnlTensorDescriptor_t output_desc,
                                     void* output) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  const cnnlPointerMode_t pointer_mode = CNNL_POINTER_MODE_HOST;
4517 4518 4519 4520 4521 4522 4523 4524
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlTransform_v2(handle,
                                              pointer_mode,
                                              alpha,
                                              input_desc,
                                              input,
                                              beta,
                                              output_desc,
                                              output));
4525 4526
}

4527
/* static */ void MLUCnnl::EmbeddingBackward(
4528 4529 4530 4531 4532 4533 4534 4535 4536
    const ExecutionContext& ctx,
    int padding_idx,
    bool scale_grad_by_freq,
    const cnnlTensorDescriptor_t indices_desc,
    const void* indices,
    const cnnlTensorDescriptor_t diff_desc,
    const void* diff,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetEmbeddingBackwardWorkspaceSize(
      handle, diff_desc, output_desc, scale_grad_by_freq, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlEmbeddingBackward(handle,
                                                   padding_idx,
                                                   scale_grad_by_freq,
                                                   indices_desc,
                                                   indices,
                                                   diff_desc,
                                                   diff,
                                                   workspace_ptr,
                                                   workspace_size,
                                                   output_desc,
                                                   output));
4559 4560
}

4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
/* static */ void MLUCnnl::RNNForward(const ExecutionContext& ctx,
                                      const cnnlRNNDescriptor_t rnn_desc,
                                      const int dev_seq_lengths[],
                                      const void* weight_param_ptr,
                                      size_t weightspace_size,
                                      const cnnlSeqDataDescriptor_t x_desc,
                                      const void* x,
                                      const cnnlSeqDataDescriptor_t y_desc,
                                      void* y,
                                      const cnnlTensorDescriptor_t h_desc,
                                      const void* hx,
                                      void* hy,
                                      const cnnlTensorDescriptor_t c_desc,
                                      const void* cx,
                                      void* cy,
                                      void* reservespace_ptr) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  // make sure 1. cnnlSetRNNDescriptor_v2 is invoked
  //           2. x_desc is not NULL
  PADDLE_ENFORCE_NOT_NULL(
      rnn_desc,
      paddle::platform::errors::Fatal(
          "MLU RNNForward failed. rnn_desc initializing failed."));
  PADDLE_ENFORCE_NOT_NULL(
      x_desc,
      paddle::platform::errors::Fatal(
          "MLU RNNForward failed. x_desc initializing failed."));
  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  size_t workspace_size, reservespace_size;
  Tensor workspace;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetRNNTempSizes(
      handle, rnn_desc, x_desc, &workspace_size, &reservespace_size));
  workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);

  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlRNNForwardTraining(handle,
                                                    rnn_desc,
                                                    dev_seq_lengths,
                                                    x_desc,
                                                    x,
                                                    y_desc,
                                                    y,
                                                    h_desc,
                                                    hx,
                                                    hy,
                                                    c_desc,
                                                    cx,
                                                    cy,
                                                    weight_param_ptr,
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
                                                    weightspace_size,
                                                    workspace_ptr,
                                                    workspace_size,
                                                    reservespace_ptr,
                                                    reservespace_size));
}

/* static */ void MLUCnnl::RNNBackward(const ExecutionContext& ctx,
                                       const cnnlRNNDescriptor_t rnn_desc,
                                       cnnlWgradMode_t add_grad,
                                       const int dev_seq_lengths[],
                                       const void* weight_param_ptr,
                                       void* dweight_param_ptr,
                                       size_t weightspace_size,
                                       const cnnlSeqDataDescriptor_t x_desc,
                                       const void* x,
                                       void* dx,
                                       const cnnlSeqDataDescriptor_t y_desc,
                                       const void* y,
                                       const void* dy,
                                       const cnnlTensorDescriptor_t hx_desc,
                                       const void* hx,
                                       const void* dhy,
                                       void* dhx,
                                       const cnnlTensorDescriptor_t cx_desc,
                                       const void* cx,
                                       const void* dcy,
                                       void* dcx,
                                       void* reservespace_ptr,
                                       size_t reservespace_size) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  PADDLE_ENFORCE_NOT_NULL(
      rnn_desc,
      paddle::platform::errors::Fatal(
          "MLU RNNForward failed. rnn_desc initializing failed."));
  PADDLE_ENFORCE_NOT_NULL(
      x_desc,
      paddle::platform::errors::Fatal(
          "MLU RNNForward failed. x_desc initializing failed."));
  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  size_t workspace_size;
  Tensor workspace;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetRNNTempSizes(
      handle, rnn_desc, x_desc, &workspace_size, &reservespace_size));
  workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlRNNBackwardData(handle,
                                                 rnn_desc,
                                                 dev_seq_lengths,
                                                 y_desc,
                                                 y,
                                                 dy,
                                                 x_desc,
                                                 dx,
                                                 hx_desc,
                                                 hx,
                                                 dhy,
                                                 dhx,
                                                 cx_desc,
                                                 cx,
                                                 dcy,
                                                 dcx,
                                                 weight_param_ptr,
                                                 weightspace_size,
                                                 workspace_ptr,
                                                 workspace_size,
                                                 reservespace_ptr,
                                                 reservespace_size));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlRNNBackwardWeights(handle,
                                                    rnn_desc,
                                                    add_grad,
                                                    dev_seq_lengths,
                                                    x_desc,
                                                    x,
                                                    hx_desc,
                                                    hx,
                                                    y_desc,
                                                    y,
                                                    dweight_param_ptr,
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
                                                    weightspace_size,
                                                    workspace_ptr,
                                                    workspace_size,
                                                    reservespace_ptr,
                                                    reservespace_size));
}

/* static */ void MLUCnnl::Mask(const ExecutionContext& ctx,
                                cnnlMaskedOp_t masked_mode,
                                const cnnlTensorDescriptor_t input_desc,
                                const void* input,
                                const cnnlTensorDescriptor_t masked_desc,
                                const void* masked,
                                const cnnlTensorDescriptor_t value_desc,
                                const void* value,
                                const cnnlTensorDescriptor_t output_desc,
                                void* output,
                                uint32_t* number) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  size_t workspace_size;
  Tensor workspace;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetMaskedWorkspaceSize(handle,
                                                        masked_mode,
                                                        input_desc,
                                                        masked_desc,
                                                        value_desc,
                                                        output_desc,
                                                        &workspace_size));
  workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlMasked_v3(handle,
                                           masked_mode,
                                           input_desc,
                                           input,
                                           masked_desc,
                                           masked,
                                           value_desc,
                                           value,
                                           workspace_ptr,
                                           workspace_size,
                                           output_desc,
                                           output,
                                           number));
}

F
fwenguang 已提交
4742
/* static */ void MLUCnnl::BceWithLogits(
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
    const ExecutionContext& ctx,
    cnnlBceWithLogitsReduction_t reduction,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t target_desc,
    const void* target,
    const cnnlTensorDescriptor_t weight_desc,
    const void* weight,
    const cnnlTensorDescriptor_t pos_weight_desc,
    const void* pos_weight,
    const cnnlTensorDescriptor_t output_desc,
    void* output) {
F
fwenguang 已提交
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetBceWithLogitsWorkspaceSize(
      handle, input_desc, weight_desc, pos_weight_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

  const cnnlComputationPreference_t prefer = CNNL_COMPUTATION_HIGH_PRECISION;
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBceWithLogits_v2(handle,
                                                  prefer,
                                                  input_desc,
                                                  input,
                                                  target_desc,
                                                  target,
                                                  weight_desc,
                                                  weight,
                                                  pos_weight_desc,
                                                  pos_weight,
                                                  reduction,
                                                  workspace_ptr,
                                                  workspace_size,
                                                  output_desc,
                                                  output));
F
fwenguang 已提交
4782 4783 4784
}

/* static */ void MLUCnnl::BceWithLogitsBackward(
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
    const ExecutionContext& ctx,
    cnnlBceWithLogitsReduction_t reduction,
    const cnnlTensorDescriptor_t grad_desc,
    const void* grad,
    const cnnlTensorDescriptor_t input_desc,
    const void* input,
    const cnnlTensorDescriptor_t target_desc,
    const void* target,
    const cnnlTensorDescriptor_t weight_desc,
    const void* weight,
    const cnnlTensorDescriptor_t pos_weight_desc,
    const void* pos_weight,
    const cnnlTensorDescriptor_t diff_input_desc,
    void* diff_input) {
F
fwenguang 已提交
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
  cnnlHandle_t handle = GetHandleFromCTX(ctx);

  size_t workspace_size;
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetBceWithLogitsBackwardWorkspaceSize(
      handle, target_desc, weight_desc, pos_weight_desc, &workspace_size));

  auto& dev_ctx = GetDevCtxFromCTX(ctx);
  Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
      {static_cast<int64_t>(workspace_size)}, dev_ctx);
  void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());

4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlBceWithLogitsBackward(handle,
                                                       grad_desc,
                                                       grad,
                                                       input_desc,
                                                       input,
                                                       target_desc,
                                                       target,
                                                       weight_desc,
                                                       weight,
                                                       pos_weight_desc,
                                                       pos_weight,
                                                       reduction,
                                                       workspace_ptr,
                                                       workspace_size,
                                                       diff_input_desc,
                                                       diff_input));
F
fwenguang 已提交
4826 4827
}

4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
/* static */ void MLUCnnl::RoiAlign(const ExecutionContext& ctx,
                                    const int pooled_height,
                                    const int pooled_width,
                                    const int sampling_ratio,
                                    const float spatial_scale,
                                    const bool aligned,
                                    const cnnlTensorDescriptor_t input_desc,
                                    const void* input,
                                    const cnnlTensorDescriptor_t boxes_desc,
                                    const void* boxes,
                                    const cnnlTensorDescriptor_t output_desc,
                                    void* output) {
  cnnlRoiAlignDescriptor_t roialign_desc;

  PADDLE_ENFORCE_MLU_SUCCESS(cnnlCreateRoiAlignDescriptor(&roialign_desc));
  const int pool_mode = 1;  // average pooling mode
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlSetRoiAlignDescriptor_v2(roialign_desc,
                                                          pooled_height,
                                                          pooled_width,
                                                          sampling_ratio,
                                                          spatial_scale,
                                                          pool_mode,
                                                          aligned));

  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlRoiAlign_v2(handle,
                                             roialign_desc,
                                             input_desc,
                                             input,
                                             boxes_desc,
                                             boxes,
                                             output_desc,
                                             output,
                                             nullptr,
                                             nullptr,
                                             nullptr,
                                             nullptr));
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlDestroyRoiAlignDescriptor(roialign_desc));
}

/* static */ void MLUCnnl::RoiAlignBackward(
    const ExecutionContext& ctx,
    const int sampling_ratio,
    const float spatial_scale,
    const bool aligned,
    const cnnlTensorDescriptor_t grads_desc,
    const void* grads,
    const cnnlTensorDescriptor_t boxes_desc,
    const void* boxes,
    const cnnlTensorDescriptor_t grads_image_desc,
    void* grads_image) {
  cnnlHandle_t handle = GetHandleFromCTX(ctx);
  const int pool_mode = 1;  // average pooling mode
  PADDLE_ENFORCE_MLU_SUCCESS(cnnlRoiAlignBackward_v2(handle,
                                                     grads_desc,
                                                     grads,
                                                     boxes_desc,
                                                     boxes,
                                                     nullptr,
                                                     nullptr,
                                                     nullptr,
                                                     nullptr,
                                                     spatial_scale,
                                                     sampling_ratio,
                                                     aligned,
                                                     pool_mode,
                                                     grads_image_desc,
                                                     grads_image));
}

F
fwenguang 已提交
4898 4899
}  // namespace operators
}  // namespace paddle