PriorBox.cpp 5.1 KB
Newer Older
G
gaoyuan 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Y
yuan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/BaseMatrix.h"

namespace paddle {

class PriorBoxLayer : public Layer {
public:
  explicit PriorBoxLayer(const LayerConfig& config) : Layer(config) {}
  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
  void forward(PassType passType);
  void backward(const UpdateCallback& callback) {}
  int numPriors_;
  std::vector<int> minSize_;
  std::vector<int> maxSize_;
  std::vector<float> aspectRatio_;
  std::vector<float> variance_;
  MatrixPtr buffer_;
};

bool PriorBoxLayer::init(const LayerMap& layerMap,
G
gaoyuan 已提交
36
                         const ParameterMap& parameterMap) {
Y
yuan 已提交
37
  Layer::init(layerMap, parameterMap);
G
gaoyuan 已提交
38 39 40
  auto pb_conf = config_.inputs(0).priorbox_conf();
  std::copy(pb_conf.min_size().begin(),
            pb_conf.min_size().end(),
Y
yuan 已提交
41
            std::back_inserter(minSize_));
G
gaoyuan 已提交
42 43
  std::copy(pb_conf.max_size().begin(),
            pb_conf.max_size().end(),
Y
yuan 已提交
44
            std::back_inserter(maxSize_));
G
gaoyuan 已提交
45 46
  std::copy(pb_conf.aspect_ratio().begin(),
            pb_conf.aspect_ratio().end(),
Y
yuan 已提交
47
            std::back_inserter(aspectRatio_));
G
gaoyuan 已提交
48 49
  std::copy(pb_conf.variance().begin(),
            pb_conf.variance().end(),
Y
yuan 已提交
50 51 52 53
            std::back_inserter(variance_));
  // flip
  int input_ratio_length = aspectRatio_.size();
  for (int index = 0; index < input_ratio_length; index++)
G
gaoyuan 已提交
54
    aspectRatio_.push_back(1 / aspectRatio_[index]);
Y
yuan 已提交
55 56
  aspectRatio_.push_back(1.);
  numPriors_ = aspectRatio_.size();
G
gaoyuan 已提交
57
  if (maxSize_.size() > 0) numPriors_++;
Y
yuan 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  buffer_ = Matrix::create(1, 1, false, false);
  return true;
}

void PriorBoxLayer::forward(PassType passType) {
  Layer::forward(passType);
  auto input = getInput(0);
  int layer_width = input.getFrameWidth();
  int layer_height = input.getFrameHeight();

  MatrixPtr inV1 = getInputValue(1);
  int image_width = inV1->getElement(0, 0);
  int image_height = inV1->getElement(0, 1);
  float step_w = static_cast<float>(image_width) / layer_width;
  float step_h = static_cast<float>(image_height) / layer_height;
  int dim = layer_height * layer_width * numPriors_ * 4;
  reserveOutput(1, dim * 2);
  // use a cpu buffer to compute
  Matrix::resizeOrCreate(buffer_, 1, dim * 2, false, false);
  auto* tmp_ptr = buffer_->getData();

  int idx = 0;
  for (int h = 0; h < layer_height; ++h) {
    for (int w = 0; w < layer_width; ++w) {
G
gaoyuan 已提交
82
      float center_x = (w + 0.5) * step_w;
Y
yuan 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
      float center_y = (h + 0.5) * step_h;
      int min_size = 0;
      for (size_t s = 0; s < minSize_.size(); s++) {
        // first prior.
        min_size = minSize_[s];
        int box_width = min_size;
        int box_height = min_size;
        // xmin, ymin, xmax, ymax.
        tmp_ptr[idx++] = (center_x - box_width / 2.) / image_width;
        tmp_ptr[idx++] = (center_y - box_height / 2.) / image_height;
        tmp_ptr[idx++] = (center_x + box_width / 2.) / image_width;
        tmp_ptr[idx++] = (center_y + box_height / 2.) / image_height;

        if (maxSize_.size() > 0) {
          CHECK_EQ(minSize_.size(), maxSize_.size());
          // second prior.
          for (size_t s = 0; s < maxSize_.size(); s++) {
            int max_size = maxSize_[s];
            box_width = box_height = sqrt(min_size * max_size);
            tmp_ptr[idx++] = (center_x - box_width / 2.) / image_width;
            tmp_ptr[idx++] = (center_y - box_height / 2.) / image_height;
            tmp_ptr[idx++] = (center_x + box_width / 2.) / image_width;
            tmp_ptr[idx++] = (center_y + box_height / 2.) / image_height;
          }
        }
      }
      // rest of priors.
      for (size_t r = 0; r < aspectRatio_.size(); r++) {
        float ar = aspectRatio_[r];
G
gaoyuan 已提交
112
        if (fabs(ar - 1.) < 1e-6) continue;
Y
yuan 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
        float box_width = min_size * sqrt(ar);
        float box_height = min_size / sqrt(ar);
        tmp_ptr[idx++] = (center_x - box_width / 2.) / image_width;
        tmp_ptr[idx++] = (center_y - box_height / 2.) / image_height;
        tmp_ptr[idx++] = (center_x + box_width / 2.) / image_width;
        tmp_ptr[idx++] = (center_y + box_height / 2.) / image_height;
      }
    }
  }
  // clip the prior's coordidate such that it is within [0, 1]
  for (int d = 0; d < dim; ++d)
    tmp_ptr[d] = std::min(std::max(tmp_ptr[d], (float)0.), (float)1.);
  // set the variance.
  for (int h = 0; h < layer_height; h++)
    for (int w = 0; w < layer_width; w++)
      for (int i = 0; i < numPriors_; i++)
G
gaoyuan 已提交
129
        for (int j = 0; j < 4; j++) tmp_ptr[idx++] = variance_[j];
Y
yuan 已提交
130 131 132 133 134 135
  MatrixPtr outV = getOutputValue();
  outV->copyFrom(buffer_->data_, dim * 2);
}
REGISTER_LAYER(priorbox, PriorBoxLayer);

}  // namespace paddle