api_custom_impl.cc 43.9 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/api_custom_impl.h"
16

17
#include "paddle/phi/api/lib/api_gen_utils.h"
18 19 20
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/api/lib/utils/storage.h"
Z
zyfncg 已提交
21
#include "paddle/phi/common/type_traits.h"
22
#include "paddle/phi/core/compat/convert_utils.h"
23 24
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/meta_tensor.h"
25
#include "paddle/phi/infermeta/backward.h"
26 27 28
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
29
#include "paddle/phi/infermeta/unary.h"
30

31
#include "glog/logging.h"
32

33 34 35
namespace paddle {
namespace experimental {

36
////////////////// Forward api impls //////////////////////
37

H
hong 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
Tensor conv2d_impl(const Tensor& input,
                   const Tensor& filter,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   const std::string& paddding_algorithm,
                   int groups,
                   const std::vector<int>& dilations,
                   const std::string& data_format,
                   bool use_addto,
                   int workspace_size_MB,
                   bool exhaustive_search) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  kernel_data_type = ParseDataType(input);

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(input, filter);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  VLOG(6) << "conv2d API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "conv2d", {kernel_backend, kernel_layout, kernel_data_type}, true);
  VLOG(6) << "conv2d API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  phi::TensorArgDef args0 = kernel.InputAt(0);
  phi::TensorArgDef args1 = kernel.InputAt(1);
  if (kernel_backend == Backend::GPU) {
    args0.backend = Backend::GPU;
    args1.backend = Backend::GPU;
  }

  auto input_input = PrepareData(input, args0, {});
  auto input_filter = PrepareData(filter, args1, {});

  Tensor api_output;
  auto kernel_out = SetKernelOutput(kernel_backend, &api_output);
  phi::MetaTensor meta_out(kernel_out);

  phi::ConvInferMeta(MakeMetaTensor(*input_input),
                     MakeMetaTensor(*input_filter),
                     strides,
                     paddings,
                     paddding_algorithm,
                     groups,
                     dilations,
                     data_format,
                     use_addto,
                     workspace_size_MB,
                     exhaustive_search,
                     &meta_out);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const std::vector<int>&,
                                    const std::vector<int>&,
                                    const std::string&,
                                    int,
                                    const std::vector<int>&,
                                    const std::string&,
                                    bool,
                                    int,
                                    bool,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  {
    (*kernel_fn)(*dev_ctx,
                 *input_input,
                 *input_filter,
                 strides,
                 paddings,
                 paddding_algorithm,
                 groups,
                 dilations,
                 data_format,
                 use_addto,
                 workspace_size_MB,
                 exhaustive_search,
                 kernel_out);
  }

  return api_output;
}

std::vector<std::vector<Tensor>> conv2d_grad_impl(
    const Tensor& input,
    const Tensor& filter,
    const Tensor& out_grad,
    const std::vector<int>& strides,
    const std::vector<int>& paddings,
    const std::string& paddding_algorithm,
    int groups,
    const std::vector<int>& dilations,
    const std::string& data_format,
    bool use_addto,
    int workspace_size_MB,
    bool exhaustive_search) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(input, filter, out_grad);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  VLOG(6) << "conv2d_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "conv2d_grad", {kernel_backend, kernel_layout, kernel_data_type}, true);
  VLOG(6) << "conv2d_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  phi::TensorArgDef args0 = kernel.InputAt(0);
  phi::TensorArgDef args1 = kernel.InputAt(1);
  phi::TensorArgDef args2 = kernel.InputAt(2);
  if (kernel_backend == Backend::GPU) {
    args0.backend = Backend::GPU;
    args1.backend = Backend::GPU;
    args2.backend = Backend::GPU;
  }

  auto input_input = PrepareData(input, args0, {});
  auto input_filter = PrepareData(filter, args1, {});
  auto input_out_grad = PrepareData(out_grad, args2, {});

  std::vector<std::vector<Tensor>> api_output(2);
  api_output[0].emplace_back();
  auto kernel_out_0 = SetKernelOutput(kernel_backend, &api_output[0][0]);
  api_output[1].emplace_back();
  auto kernel_out_1 = SetKernelOutput(kernel_backend, &api_output[1][0]);
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);

  phi::GeneralBinaryGradInferMeta(MakeMetaTensor(*input_input),
                                  MakeMetaTensor(*input_filter),
                                  &meta_out_0,
                                  &meta_out_1);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const std::vector<int>&,
                                    const std::vector<int>&,
                                    const std::string&,
                                    int,
                                    const std::vector<int>&,
                                    const std::string&,
                                    bool,
                                    int,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  {
    (*kernel_fn)(*dev_ctx,
                 *input_input,
                 *input_filter,
                 *input_out_grad,
                 strides,
                 paddings,
                 paddding_algorithm,
                 groups,
                 dilations,
                 data_format,
                 use_addto,
                 workspace_size_MB,
                 exhaustive_search,
                 kernel_out_0,
                 kernel_out_1);
  }

  return api_output;
}

245
Tensor copy_to_impl(const Tensor& x, Place place, bool blocking) {
246
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
247 248
  kernel_key_set.backend_set =
      kernel_key_set.backend_set | BackendSet(phi::TransToPhiBackend(place));
249
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
250
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
251 252
      "copy", kernel_key);

253 254
  VLOG(6) << "copy API kernel key: " << kernel_key;
  VLOG(6) << "copy API kernel: " << kernel;
255 256 257

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

258
  auto dense_x = TensorToDenseTensor(x);
259 260

  Tensor out;
261 262 263 264 265 266 267 268 269
  auto kernel_out = SetKernelOutput(kernel_key.backend(), &out);
  phi::MetaTensor meta_out(kernel_out);
  phi::UnchangedInferMeta(*dense_x, &meta_out);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    phi::Place,
                                    bool,
                                    phi::DenseTensor*);
270

271
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
H
hong 已提交
272

273
  (*kernel_fn)(*dev_ctx, *dense_x, place, blocking, kernel_out);
274 275 276 277

  return out;
}

278
std::vector<Tensor> split_impl(const Tensor& x,
279
                               const IntArray& num_or_sections,
280 281
                               const Scalar& axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
282
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
283 284 285 286

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();
C
chentianyu03 已提交
287

288
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
C
chentianyu03 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
      "split", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "split API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "split API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_x = PrepareData(x, kernel.InputAt(0), {});

  // Calculate the number of out tensors
  size_t out_number;
  if (num_or_sections.GetData().size() == 1) {
    out_number = num_or_sections.GetData()[0];
  } else {
    out_number = num_or_sections.GetData().size();
  }

  std::vector<Tensor> out;
  auto dense_outs = SetKernelOutput(out_number, kernel_backend, &out);
308
  std::vector<phi::MetaTensor> meta_outs;
309 310 311
  meta_outs.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_out_ptrs;
  meta_out_ptrs.reserve(out_number);
C
chentianyu03 已提交
312 313
  for (size_t i = 0; i < out_number; ++i) {
    meta_outs.push_back(dense_outs[i]);
314
    meta_out_ptrs.push_back(&meta_outs.back());
C
chentianyu03 已提交
315 316
  }

317
  phi::SplitInferMeta(
318
      MakeMetaTensor(*dense_x), num_or_sections, axis, meta_out_ptrs);
C
chentianyu03 已提交
319 320

  using kernel_signature = void (*)(const platform::DeviceContext&,
321
                                    const phi::DenseTensor&,
322
                                    const phi::IntArray&,
323 324
                                    const phi::Scalar&,
                                    std::vector<phi::DenseTensor*>&);
C
chentianyu03 已提交
325 326 327
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx,
               *dense_x,
328
               phi::IntArray(num_or_sections),
329
               phi::Scalar(axis),
C
chentianyu03 已提交
330 331 332 333
               dense_outs);

  return out;
}
334

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
std::tuple<Tensor, Tensor, Tensor> momentum_impl(
    const Tensor& param,
    const Tensor& grad,
    const Tensor& velocity,
    const Tensor& learning_rate,
    paddle::optional<const Tensor&> master_param,
    float mu,
    bool use_nesterov,
    const std::string& regularization_method,
    float regularization_coeff,
    bool multi_precision,
    float rescale_grad) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(param);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }
  std::string kernel_name = "momentum";
  if (grad.is_selected_rows()) {
    kernel_name = "momentum_dense_param_sparse_grad";
  }
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      kernel_name, {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << kernel_name << " API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << kernel_name << " API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_param = PrepareData(param, kernel.InputAt(0), {});
  auto input_grad = PrepareData(grad, kernel.InputAt(1), {});
  auto input_velocity = PrepareData(velocity, kernel.InputAt(2), {});
  auto input_learning_rate = PrepareData(learning_rate, kernel.InputAt(3), {});
  paddle::optional<const phi::DenseTensor&> input_master_param(paddle::none);
  auto input_master_param_ptr =
      PrepareData(master_param, kernel.InputAt(4), {});

  std::tuple<Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = input_param.get();
  auto kernel_out_1 = input_velocity.get();
  phi::DenseTensor* kernel_out_2 = nullptr;
  if (input_master_param_ptr) {
    input_master_param =
        paddle::make_optional<const phi::DenseTensor&>(*input_master_param_ptr);
    kernel_out_2 =
        paddle::make_optional<phi::DenseTensor&>(*input_master_param_ptr)
            .get_ptr();
  }

  paddle::optional<const phi::MetaTensor&> input_meta_ref_master_param(
      paddle::none);
  phi::DenseTensor dt;
  phi::MetaTensor input_meta_tmp_master_param(dt);
  if (input_master_param_ptr) {
    input_meta_tmp_master_param.set_dtype(input_master_param_ptr->dtype());
    input_meta_tmp_master_param.set_dims(input_master_param_ptr->dims());
    input_meta_tmp_master_param.set_layout(input_master_param_ptr->layout());
    input_meta_ref_master_param = input_meta_tmp_master_param;
  }
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  if (kernel_out_2) {
    phi::MetaTensor meta_out_2(kernel_out_2);
    phi::MomentumInferMeta(MakeMetaTensor(*input_param),
                           MakeMetaTensor(*input_grad),
                           MakeMetaTensor(*input_velocity),
                           MakeMetaTensor(*input_learning_rate),
                           input_meta_ref_master_param,
                           mu,
                           use_nesterov,
                           regularization_method,
                           regularization_coeff,
                           multi_precision,
                           rescale_grad,
                           &meta_out_0,
                           &meta_out_1,
                           &meta_out_2);
  } else {
    phi::MomentumInferMeta(MakeMetaTensor(*input_param),
                           MakeMetaTensor(*input_grad),
                           MakeMetaTensor(*input_velocity),
                           MakeMetaTensor(*input_learning_rate),
                           input_meta_ref_master_param,
                           mu,
                           use_nesterov,
                           regularization_method,
                           regularization_coeff,
                           multi_precision,
                           rescale_grad,
                           &meta_out_0,
                           &meta_out_1,
                           nullptr);
  }

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    paddle::optional<const phi::DenseTensor&>,
                                    float,
                                    bool,
                                    const std::string&,
                                    float,
                                    bool,
                                    float,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  (*kernel_fn)(*dev_ctx,
               *input_param,
               *input_grad,
               *input_velocity,
               *input_learning_rate,
               input_master_param,
               mu,
               use_nesterov,
               regularization_method,
               regularization_coeff,
               multi_precision,
               rescale_grad,
               kernel_out_0,
               kernel_out_1,
               kernel_out_2);

  return api_output;
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
std::vector<Tensor> unbind_impl(const Tensor& input, int axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(input);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();

  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "unbind", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "unbind API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "unbind API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_input = PrepareData(input, kernel.InputAt(0), {});

  // Calculate the number of out tensors
  auto input_shape = input.dims();
  if (axis < 0) {
    axis = input_shape.size() + axis;
  }
  auto out_num = input_shape[axis];

  std::vector<Tensor> out;
  auto dense_outs = SetKernelOutput(out_num, kernel_backend, &out);
  std::vector<phi::MetaTensor> meta_outs;
  meta_outs.reserve(out_num);
  std::vector<phi::MetaTensor*> meta_out_ptrs;
  meta_out_ptrs.reserve(out_num);
  for (int64_t i = 0; i < out_num; ++i) {
    meta_outs.push_back(dense_outs[i]);
    meta_out_ptrs.push_back(&meta_outs.back());
  }

  phi::UnbindInferMeta(MakeMetaTensor(*dense_input), axis, meta_out_ptrs);

  using kernel_signature = void (*)(const phi::DeviceContext&,
                                    const phi::DenseTensor&,
                                    int,
                                    std::vector<phi::DenseTensor*>&);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_input, axis, dense_outs);

  return out;
}

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
////////////////// Backward(grad) api impls //////////////////////

// TODO(chenweihang):  the original sum grad op can support higher-level
// differentiation,
// but if we use this impl, it will not support. We need to be able to reuse
// the autograd API here, which is not yet implemented
// TODO(chenweihang): we should support call generated api in custom api impl
std::vector<Tensor> add_n_grad_impl(const std::vector<Tensor>& x,
                                    const Tensor& out_grad) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(out_grad);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();

  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "scale", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "add_n_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "add_n_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_out_grad = PrepareData(out_grad, kernel.InputAt(0), {});

  size_t out_number = x.size();
  std::vector<Tensor> x_grad;
  auto dense_x_grad = SetKernelOutput(out_number, kernel_backend, &x_grad);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::Scalar&,
                                    float,
                                    bool,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  for (auto* dense_x_grad_t : dense_x_grad) {
    phi::MetaTensor meta_out(dense_x_grad_t);
    phi::UnchangedInferMeta(MakeMetaTensor(*dense_out_grad), &meta_out);
    (*kernel_fn)(
        *dev_ctx, *dense_out_grad, phi::Scalar(1.0), 0.0, true, dense_x_grad_t);
  }

  return x_grad;
}

H
hong 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> batch_norm_impl(
    const Tensor& x,
    const Tensor& scale,
    const Tensor& bias,
    const Tensor& mean,
    const Tensor& variance,
    float momentum,
    float epsilon,
    const std::string& data_layout,
    bool is_test,
    bool use_global_stats,
    bool trainable_statistics,
    bool fuse_with_relu) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  kernel_data_type = ParseDataType(x);

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(x);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "batch_norm", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "batch_norm API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "batch_norm API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_x = PrepareData(x, kernel.InputAt(0), {});
  auto input_scale = PrepareData(scale, kernel.InputAt(1), {});
  auto input_bias = PrepareData(bias, kernel.InputAt(2), {});
  auto input_mean = PrepareData(mean, kernel.InputAt(3), {});
  auto input_variance = PrepareData(variance, kernel.InputAt(4), {});

  std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = SetKernelOutput(kernel_backend, &std::get<0>(api_output));
  std::get<1>(api_output).set_impl(mean.impl());
  std::get<2>(api_output).set_impl(variance.impl());
  auto kernel_out_1 = SetKernelOutput(kernel_backend, &std::get<1>(api_output));
  auto kernel_out_2 = SetKernelOutput(kernel_backend, &std::get<2>(api_output));
  auto kernel_out_3 = SetKernelOutput(kernel_backend, &std::get<3>(api_output));
  auto kernel_out_4 = SetKernelOutput(kernel_backend, &std::get<4>(api_output));
  auto kernel_out_5 = SetKernelOutput(kernel_backend, &std::get<5>(api_output));
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  phi::MetaTensor meta_out_2(kernel_out_2);
  phi::MetaTensor meta_out_3(kernel_out_3);
  phi::MetaTensor meta_out_4(kernel_out_4);
  phi::MetaTensor meta_out_5(kernel_out_5);

  phi::BatchNormInferMeta(MakeMetaTensor(*input_x),
                          MakeMetaTensor(*input_scale),
                          MakeMetaTensor(*input_bias),
                          MakeMetaTensor(*input_mean),
                          MakeMetaTensor(*input_variance),
                          momentum,
                          epsilon,
                          data_layout,
                          is_test,
                          use_global_stats,
                          trainable_statistics,
                          fuse_with_relu,
                          &meta_out_0,
                          &meta_out_1,
                          &meta_out_2,
                          &meta_out_3,
                          &meta_out_4,
                          &meta_out_5);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    float,
                                    float,
                                    const std::string&,
                                    bool,
                                    bool,
                                    bool,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  {
    (*kernel_fn)(*dev_ctx,
                 *input_x,
                 *input_scale,
                 *input_bias,
                 *input_mean,
                 *input_variance,
                 momentum,
                 epsilon,
                 data_layout,
                 is_test,
                 use_global_stats,
                 trainable_statistics,
                 fuse_with_relu,
                 kernel_out_0,
                 kernel_out_1,
                 kernel_out_2,
                 kernel_out_3,
                 kernel_out_4,
                 kernel_out_5);
  }

  return api_output;
}

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
std::vector<Tensor> concat_grad_impl(const std::vector<Tensor>& x,
                                     const Tensor& out_grad,
                                     const Scalar& axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(out_grad);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();

  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "concat_grad", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "concat_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "concat_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  // std::unique_ptr<std::vector<phi::DenseTensor>>
  auto dense_x = PrepareData(x, kernel.InputAt(0), {});
  auto dense_out_grad = PrepareData(out_grad, kernel.InputAt(1), {});

  // Calculate the number of out tensors
  size_t out_number = x.size();
  std::vector<Tensor> x_grad;
  auto dense_x_grad = SetKernelOutput(out_number, kernel_backend, &x_grad);

  std::vector<phi::MetaTensor> meta_x;
  meta_x.reserve(x.size());
  std::vector<phi::MetaTensor*> meta_x_ptrs;
  meta_x_ptrs.reserve(x.size());
  for (const auto& t : *dense_x) {
    meta_x.push_back(t);
    meta_x_ptrs.push_back(&meta_x.back());
  }

  std::vector<phi::MetaTensor> meta_x_grad;
  meta_x_grad.reserve(x.size());
  std::vector<phi::MetaTensor*> meta_x_grad_ptrs;
  meta_x_grad_ptrs.reserve(x.size());
  for (size_t i = 0; i < out_number; ++i) {
    meta_x_grad.push_back(*dense_x_grad[i]);
    meta_x_grad_ptrs.push_back(&meta_x_grad.back());
  }

  phi::UnchangedMultiInferMeta(meta_x_ptrs, meta_x_grad_ptrs);

  std::vector<const phi::DenseTensor*> dense_x_ptr;
  dense_x_ptr.reserve(x.size());
  for (const auto& t : *dense_x) {
    dense_x_ptr.push_back(&t);
  }

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const std::vector<const phi::DenseTensor*>&,
                                    const phi::DenseTensor&,
                                    const phi::Scalar&,
                                    std::vector<phi::DenseTensor*>);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(
      *dev_ctx, dense_x_ptr, *dense_out_grad, phi::Scalar(axis), dense_x_grad);

  return x_grad;
}

Z
zyfncg 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
Tensor imag_grad_impl(const Tensor& out_grad) {
  phi::KernelKey kernel_key{ParseBackend(out_grad),
                            out_grad.layout(),
                            phi::dtype::ToComplex(out_grad.dtype())};
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "imag_grad", kernel_key);

  VLOG(6) << "imag_grad API kernel key: " << kernel_key;
  VLOG(6) << "imag_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  auto dense_out_grad = TensorToDenseTensor(out_grad);

  Tensor out;
  auto kernel_out = SetKernelOutput(kernel_key.backend(), &out);
  phi::MetaTensor meta_out(kernel_out);
  phi::RealAndImagGradInferMeta(*dense_out_grad, &meta_out);

  using kernel_signature = void (*)(
      const phi::DeviceContext&, const phi::DenseTensor&, phi::DenseTensor*);

  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_out_grad, kernel_out);

  return out;
}

Tensor real_grad_impl(const Tensor& out_grad) {
  phi::KernelKey kernel_key{ParseBackend(out_grad),
                            out_grad.layout(),
                            phi::dtype::ToComplex(out_grad.dtype())};
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "real_grad", kernel_key);

  VLOG(6) << "real_grad API kernel key: " << kernel_key;
  VLOG(6) << "real_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

  auto dense_out_grad = TensorToDenseTensor(out_grad);

  Tensor out;
  auto kernel_out = SetKernelOutput(kernel_key.backend(), &out);
  phi::MetaTensor meta_out(kernel_out);
  phi::RealAndImagGradInferMeta(*dense_out_grad, &meta_out);

  using kernel_signature = void (*)(
      const phi::DeviceContext&, const phi::DenseTensor&, phi::DenseTensor*);

  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_out_grad, kernel_out);

  return out;
}

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
std::vector<Tensor> stack_grad_impl(const std::vector<Tensor>& x,
                                    const Tensor& out_grad,
                                    int axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(out_grad);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();

  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "stack_grad", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "stack_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "stack_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_out_grad = PrepareData(out_grad, kernel.InputAt(0), {});

  size_t out_number = x.size();
  std::vector<Tensor> x_grad;
  auto dense_x_grad = SetKernelOutput(out_number, kernel_backend, &x_grad);
  std::vector<phi::MetaTensor> meta_x_grad;
  meta_x_grad.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_x_grad_ptrs;
  meta_x_grad_ptrs.reserve(out_number);
  for (size_t i = 0; i < out_number; ++i) {
    meta_x_grad.push_back(dense_x_grad[i]);
    meta_x_grad_ptrs.push_back(&meta_x_grad.back());
  }

  phi::StackGradInferMeta(
      MakeMetaTensor(*dense_out_grad), axis, meta_x_grad_ptrs);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    int axis,
                                    std::vector<phi::DenseTensor*>);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_out_grad, axis, dense_x_grad);

  return x_grad;
}

Y
YuanRisheng 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
std::vector<Tensor> meshgrid_impl(const std::vector<Tensor>& inputs) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(inputs);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "meshgrid", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "meshgrid API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "meshgrid API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_inputs_vec = PrepareData(inputs, kernel.InputAt(0), {});
  std::vector<const phi::DenseTensor*> input_inputs(input_inputs_vec->size());
  for (size_t i = 0; i < input_inputs.size(); ++i) {
    input_inputs[i] = &input_inputs_vec->at(i);
  }

  auto x_meta_vec = MakeMetaTensor(input_inputs);
  std::vector<phi::MetaTensor*> inputs_metas(x_meta_vec.size());
  for (size_t i = 0; i < x_meta_vec.size(); ++i) {
    inputs_metas[i] = &x_meta_vec[i];
  }

  // Calculate the number of out tensors
  size_t out_number = inputs.size();

  std::vector<Tensor> out;
  auto dense_outs = SetKernelOutput(out_number, kernel_backend, &out);

  std::vector<phi::MetaTensor> meta_outs;
  meta_outs.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_out_ptrs;
  meta_out_ptrs.reserve(out_number);
  for (size_t i = 0; i < out_number; ++i) {
    meta_outs.push_back(dense_outs[i]);
    meta_out_ptrs.push_back(&meta_outs.back());
  }
  phi::MeshgridInferMeta(inputs_metas, meta_out_ptrs);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const std::vector<const phi::DenseTensor*>&,
                                    std::vector<phi::DenseTensor*>&);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, input_inputs, dense_outs);

  return out;
}

std::vector<Tensor> meshgrid_grad_impl(
    const std::vector<Tensor>& inputs,
    const std::vector<Tensor>& outputs_grad) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(inputs, outputs_grad);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "meshgrid_grad", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "meshgrid_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "meshgrid_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_inputs_vec = PrepareData(inputs, kernel.InputAt(0), {});
  std::vector<const phi::DenseTensor*> input_inputs(input_inputs_vec->size());
  for (size_t i = 0; i < input_inputs.size(); ++i) {
    input_inputs[i] = &input_inputs_vec->at(i);
  }
  auto input_outputs_grad_vec =
      PrepareData(outputs_grad, kernel.InputAt(1), {});
  std::vector<const phi::DenseTensor*> input_outputs_grad(
      input_outputs_grad_vec->size());
  for (size_t i = 0; i < input_outputs_grad.size(); ++i) {
    input_outputs_grad[i] = &input_outputs_grad_vec->at(i);
  }

  size_t out_number = inputs.size();
  std::vector<Tensor> api_output;
  auto kernel_out = SetKernelOutput(out_number, kernel_backend, &api_output);

  auto inputs_meta_vec = MakeMetaTensor(input_inputs);
  std::vector<phi::MetaTensor*> inputs_metas(inputs_meta_vec.size());
  for (size_t i = 0; i < inputs_meta_vec.size(); ++i) {
    inputs_metas[i] = &inputs_meta_vec[i];
  }

  auto outputs_grad_meta_vec = MakeMetaTensor(input_outputs_grad);
  std::vector<phi::MetaTensor*> outputs_grad_metas(
      outputs_grad_meta_vec.size());
  for (size_t i = 0; i < outputs_grad_meta_vec.size(); ++i) {
    outputs_grad_metas[i] = &outputs_grad_meta_vec[i];
  }

  std::vector<phi::MetaTensor> meta_outs;
  meta_outs.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_out_ptrs;
  meta_out_ptrs.reserve(out_number);
  for (size_t i = 0; i < out_number; ++i) {
    meta_outs.push_back(kernel_out[i]);
    meta_out_ptrs.push_back(&meta_outs.back());
  }

  phi::MeshgridGradInferMeta(inputs_metas, outputs_grad_metas, meta_out_ptrs);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const std::vector<const phi::DenseTensor*>&,
                                    const std::vector<const phi::DenseTensor*>&,
                                    std::vector<phi::DenseTensor*>&);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, input_inputs, input_outputs_grad, kernel_out);

  return api_output;
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
std::vector<Tensor> multi_dot_grad_impl(const std::vector<Tensor>& x,
                                        const Tensor& out_grad) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(x, out_grad);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  VLOG(6) << "multi_dot_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "multi_dot_grad", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "multi_dot_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_x_vec = PrepareData(x, kernel.InputAt(0), {});
  std::vector<const phi::DenseTensor*> input_x(input_x_vec->size());
  for (size_t i = 0; i < input_x.size(); ++i) {
    input_x[i] = &input_x_vec->at(i);
  }
  auto input_out_grad = PrepareData(out_grad, kernel.InputAt(1), {});

  size_t out_number = input_x.size();
  std::vector<Tensor> api_output;
  auto kernel_out = SetKernelOutput(out_number, kernel_backend, &api_output);

  auto x_meta_vec = MakeMetaTensor(input_x);
  std::vector<phi::MetaTensor*> x_metas(x_meta_vec.size());
  for (size_t i = 0; i < x_meta_vec.size(); ++i) {
    x_metas[i] = &x_meta_vec[i];
  }

  std::vector<phi::MetaTensor> meta_outs;
  meta_outs.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_out_ptrs;
  meta_out_ptrs.reserve(out_number);
  for (size_t i = 0; i < out_number; ++i) {
    meta_outs.push_back(kernel_out[i]);
    meta_out_ptrs.push_back(&meta_outs.back());
  }

  phi::MultiDotGradInferMeta(
      x_metas, MakeMetaTensor(*input_out_grad), meta_out_ptrs);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const std::vector<const phi::DenseTensor*>&,
                                    const phi::DenseTensor&,
                                    std::vector<phi::DenseTensor*>&);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, input_x, *input_out_grad, kernel_out);

  return api_output;
}

std::vector<Tensor> multiplex_grad_impl(const std::vector<Tensor>& inputs,
                                        const Tensor& ids,
                                        const Tensor& out_grad) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(out_grad);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  VLOG(6) << "multiplex_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "multiplex_grad", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "multiplex_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_ids = PrepareData(ids, kernel.InputAt(0), {});
  auto input_out_grad = PrepareData(out_grad, kernel.InputAt(1), {});

  auto out_number = inputs.size();
  std::vector<Tensor> api_output;
  auto kernel_out = SetKernelOutput(out_number, kernel_backend, &api_output);

  std::vector<phi::MetaTensor> meta_outs;
  meta_outs.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_out_ptrs;
  meta_out_ptrs.reserve(out_number);
  for (size_t i = 0; i < out_number; ++i) {
    meta_outs.push_back(kernel_out[i]);
    meta_out_ptrs.push_back(&meta_outs.back());
  }

  phi::MultiplexGradInferMeta(MakeMetaTensor(*input_ids),
                              MakeMetaTensor(*input_out_grad),
                              meta_out_ptrs);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    std::vector<phi::DenseTensor*>&);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *input_ids, *input_out_grad, kernel_out);

  return api_output;
}

1147 1148
}  // namespace experimental
}  // namespace paddle