jit_kernel_exp.cc 26.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
16
#include <cmath>  // for exp
T
tensor-tang 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

namespace paddle {
namespace operators {
namespace math {

#ifdef __AVX__
namespace detail {
__m256 Exp(__m256 a);
}  // namespace detail
#endif

namespace jitkernel {
namespace jit = platform::jit;

/* VExp JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VExpKernelImpl : public VExpKernel<T> {
 public:
T
tensor-tang 已提交
44 45 46
  explicit VExpKernelImpl(int d) : VExpKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
47 48 49 50 51 52
      y[i] = std::exp(x[i]);
    }
  }
};

#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
53 54 55 56 57
#define MKL_FLOAT(isa, block)                                               \
  template <>                                                               \
  void VExpKernelImpl<float, isa, block>::Compute(const float* x, float* y) \
      const {                                                               \
    platform::dynload::vsExp(this->num_, x, y);                             \
T
tensor-tang 已提交
58 59
  }

T
tensor-tang 已提交
60 61 62 63 64
#define MKL_DOUBLE(isa, block)                                                 \
  template <>                                                                  \
  void VExpKernelImpl<double, isa, block>::Compute(const double* x, double* y) \
      const {                                                                  \
    platform::dynload::vdExp(this->num_, x, y);                                \
T
tensor-tang 已提交
65 66 67 68 69 70 71
  }
FOR_EACH_ISA(MKL_FLOAT, kLT8);
FOR_EACH_ISA(MKL_FLOAT, kGT8LT16);
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
#endif

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
namespace detail {

#ifdef __AVX__

#define ALIGN32 __attribute__((aligned(32)))

#define _PS256_CONST(Name, Val)                                      \
  static const float _ps256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
                                                 Val, Val, Val, Val}

#define _PI256_CONST(Name, Val)                                    \
  static const int _pi256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
                                               Val, Val, Val, Val}

_PI256_CONST(0x7f, 0x7f);
_PS256_CONST(one, 1.f);
_PS256_CONST(0p5, 0.5f);
_PS256_CONST(exp_hi, 88.3762626647949f);
_PS256_CONST(exp_lo, -88.3762626647949f);
_PS256_CONST(cephes_LOG2EF, 1.44269504088896341);
_PS256_CONST(cephes_exp_C1, 0.693359375);
_PS256_CONST(cephes_exp_C2, -2.12194440e-4);
_PS256_CONST(cephes_exp_p0, 1.9875691500E-4);
_PS256_CONST(cephes_exp_p1, 1.3981999507E-3);
_PS256_CONST(cephes_exp_p2, 8.3334519073E-3);
_PS256_CONST(cephes_exp_p3, 4.1665795894E-2);
_PS256_CONST(cephes_exp_p4, 1.6666665459E-1);
_PS256_CONST(cephes_exp_p5, 5.0000001201E-1);

typedef union imm_xmm_union {
  __m256i imm;
  __m128i xmm[2];
} imm_xmm_union;

#define COPY_IMM_TO_XMM(imm_, xmm0_, xmm1_) \
  {                                         \
    imm_xmm_union u ALIGN32;                \
    u.imm = imm_;                           \
    xmm0_ = u.xmm[0];                       \
    xmm1_ = u.xmm[1];                       \
  }

#define COPY_XMM_TO_IMM(xmm0_, xmm1_, imm_) \
  {                                         \
    imm_xmm_union u ALIGN32;                \
    u.xmm[0] = xmm0_;                       \
    u.xmm[1] = xmm1_;                       \
    imm_ = u.imm;                           \
  }

#define AVX2_BITOP_USING_SSE2(fn)                           \
  static inline __m256i avx2_mm256_##fn(__m256i x, int y) { \
    /* use SSE2 to perform the bitop AVX2 */                \
    __m128i x1, x2;                                         \
    __m256i ret;                                            \
    COPY_IMM_TO_XMM(x, x1, x2);                             \
    x1 = _mm_##fn(x1, y);                                   \
    x2 = _mm_##fn(x2, y);                                   \
    COPY_XMM_TO_IMM(x1, x2, ret);                           \
    return ret;                                             \
  }

#define AVX2_INTOP_USING_SSE2(fn)                                    \
  static inline __m256i avx2_mm256_add_epi32(__m256i x, __m256i y) { \
    /* use SSE2 to perform the AVX2 integer operation */             \
    __m128i x1, x2;                                                  \
    __m128i y1, y2;                                                  \
    __m256i ret;                                                     \
    COPY_IMM_TO_XMM(x, x1, x2);                                      \
    COPY_IMM_TO_XMM(y, y1, y2);                                      \
    x1 = _mm_##fn(x1, y1);                                           \
    x2 = _mm_##fn(x2, y2);                                           \
    COPY_XMM_TO_IMM(x1, x2, ret);                                    \
    return ret;                                                      \
  }

AVX2_BITOP_USING_SSE2(slli_epi32);
AVX2_INTOP_USING_SSE2(add_epi32);

__m256 ExpAVX(__m256 x) {
  __m256 tmp = _mm256_setzero_ps(), fx;
  __m256 one = *reinterpret_cast<const __m256*>(_ps256_one);
  __m256i imm0;

  x = _mm256_min_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_hi));
  x = _mm256_max_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_lo));

  /* express exp(x) as exp(g + n*log(2)) */
  fx = _mm256_mul_ps(x, *reinterpret_cast<const __m256*>(_ps256_cephes_LOG2EF));
  fx = _mm256_add_ps(fx, *reinterpret_cast<const __m256*>(_ps256_0p5));

  tmp = _mm256_floor_ps(fx);

  /* if greater, substract 1 */
  __m256 mask = _mm256_cmp_ps(tmp, fx, _CMP_GT_OS);
  mask = _mm256_and_ps(mask, one);
  fx = _mm256_sub_ps(tmp, mask);

  tmp =
      _mm256_mul_ps(fx, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C1));
  __m256 z =
      _mm256_mul_ps(fx, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C2));
  x = _mm256_sub_ps(x, tmp);
  x = _mm256_sub_ps(x, z);
  z = _mm256_mul_ps(x, x);

  __m256 y = *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p0);
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p1));
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p2));
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p3));
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p4));
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p5));
  y = _mm256_mul_ps(y, z);
  y = _mm256_add_ps(y, x);
  y = _mm256_add_ps(y, one);

  /* build 2^n */
  imm0 = _mm256_cvttps_epi32(fx);
  // two AVX2 instructions using SSE2
  imm0 = avx2_mm256_add_epi32(imm0,
                              *reinterpret_cast<const __m256i*>(_pi256_0x7f));
  imm0 = avx2_mm256_slli_epi32(imm0, 23);
  __m256 pow2n = _mm256_castsi256_ps(imm0);
  y = _mm256_mul_ps(y, pow2n);
  return y;
}
#endif

#ifdef __AVX2__
__m256 ExpAVX2(__m256 x) {
  __m256 tmp = _mm256_setzero_ps(), fx;
  __m256 one = *reinterpret_cast<const __m256*> _ps256_one;
  __m256i imm0;

  x = _mm256_min_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_hi));
  x = _mm256_max_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_lo));

  /* express exp(x) as exp(g + n*log(2)) */
  fx = _mm256_mul_ps(x, *reinterpret_cast<const __m256*>(_ps256_cephes_LOG2EF));
  fx = _mm256_add_ps(fx, *reinterpret_cast<const __m256*>(_ps256_0p5));

  tmp = _mm256_floor_ps(fx);

  /* if greater, substract 1 */
  __m256 mask = _mm256_cmp_ps(tmp, fx, _CMP_GT_OS);
  mask = _mm256_and_ps(mask, one);
  fx = _mm256_sub_ps(tmp, mask);

  tmp =
      _mm256_mul_ps(fx, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C1));
  __m256 z =
      _mm256_mul_ps(fx, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C2));
  x = _mm256_sub_ps(x, tmp);
  x = _mm256_sub_ps(x, z);
  z = _mm256_mul_ps(x, x);
  __m256 y = *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p0);
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p1));
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p2));
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p3));
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p4));
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p5));
  y = _mm256_mul_ps(y, z);
  y = _mm256_add_ps(y, x);
  y = _mm256_add_ps(y, one);

  /* build 2^n */
  imm0 = _mm256_cvttps_epi32(fx);
  // two AVX2 instructions
  imm0 = _mm256_add_epi32(imm0, *reinterpret_cast<const __m256i*>(_pi256_0x7f));
  imm0 = _mm256_slli_epi32(imm0, 23);
  __m256 pow2n = _mm256_castsi256_ps(imm0);
  y = _mm256_mul_ps(y, pow2n);
  return y;
}
#endif

}  // namespace detail

#define INTRI8_FLOAT(isa, expisa)                                          \
T
tensor-tang 已提交
261 262 263 264
  template <>                                                              \
  void VExpKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                              \
    __m256 tmp = _mm256_loadu_ps(x);                                       \
265
    _mm256_storeu_ps(y, expisa(tmp));                                      \
T
tensor-tang 已提交
266 267
  }

268
#define INTRI16_FLOAT(isa, expisa)                                          \
T
tensor-tang 已提交
269 270 271 272 273
  template <>                                                               \
  void VExpKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp0 = _mm256_loadu_ps(x);                                       \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                   \
274 275
    tmp0 = expisa(tmp0);                                                    \
    tmp1 = expisa(tmp1);                                                    \
T
tensor-tang 已提交
276 277
    _mm256_storeu_ps(y, tmp0);                                              \
    _mm256_storeu_ps(y + 8, tmp1);                                          \
T
tensor-tang 已提交
278 279 280
  }

#ifdef __AVX__
281 282
INTRI8_FLOAT(jit::avx, detail::ExpAVX);
INTRI16_FLOAT(jit::avx, detail::ExpAVX);
T
tensor-tang 已提交
283 284
#endif
#ifdef __AVX2__
285 286
INTRI8_FLOAT(jit::avx2, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx2, detail::ExpAVX2);
T
tensor-tang 已提交
287 288
#endif
#ifdef __AVX512F__
289 290
INTRI8_FLOAT(jit::avx512f, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx512f, detail::ExpAVX2);
T
tensor-tang 已提交
291 292 293 294 295 296 297 298 299 300
#endif
// TODO(TJ): eq16 test and complete avx512

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE

REGISTER_JITKERNEL(vexp, VExpKernel);

T
tensor-tang 已提交
301 302 303 304 305
/* VSigmoid JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VSigmoidKernelImpl : public VSigmoidKernel<T> {
 public:
  explicit VSigmoidKernelImpl(int d) : VSigmoidKernel<T>() {
T
tensor-tang 已提交
306
    this->num_ = d;
T
tensor-tang 已提交
307 308
    vexp_ = KernelPool::Instance().template Get<VExpKernel<T>>(d);
  }
T
tensor-tang 已提交
309
  void Compute(const T* x, T* y) const override {
T
tensor-tang 已提交
310 311
    const T min = SIGMOID_THRESHOLD_MIN;
    const T max = SIGMOID_THRESHOLD_MAX;
T
tensor-tang 已提交
312
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
313 314 315
      y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
      y[i] = static_cast<T>(0) - y[i];
    }
T
tensor-tang 已提交
316
    vexp_->Compute(y, y);
T
tensor-tang 已提交
317
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
318 319 320 321 322 323 324 325
      y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
    }
  }

 private:
  std::shared_ptr<const VExpKernel<T>> vexp_;
};

326
#define INTRI_SIGMOID(tmp, min, max, expisa)      \
327 328 329
  tmp = _mm256_max_ps(tmp, min);                  \
  tmp = _mm256_min_ps(tmp, max);                  \
  tmp = _mm256_sub_ps(_mm256_set1_ps(0.0f), tmp); \
330
  tmp = expisa(tmp);                              \
331 332 333
  tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp); \
  tmp = _mm256_div_ps(_mm256_set1_ps(1.0f), tmp)

334
#define INTRI8_FLOAT(isa, expisa)                                              \
T
tensor-tang 已提交
335 336 337
  template <>                                                                  \
  void VSigmoidKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                                  \
338
    /*use static const??*/ __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
T
tensor-tang 已提交
339 340
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                        \
    __m256 tmp = _mm256_loadu_ps(x);                                           \
341
    INTRI_SIGMOID(tmp, min, max, expisa);                                      \
T
tensor-tang 已提交
342
    _mm256_storeu_ps(y, tmp);                                                  \
343 344
  }

345
#define INTRI16_FLOAT(isa, expisa)                                      \
T
tensor-tang 已提交
346 347 348 349 350 351 352
  template <>                                                           \
  void VSigmoidKernelImpl<float, isa, kEQ16>::Compute(const float* x,   \
                                                      float* y) const { \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                 \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                                   \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                               \
353 354
    INTRI_SIGMOID(tmp0, min, max, expisa);                              \
    INTRI_SIGMOID(tmp1, min, max, expisa);                              \
T
tensor-tang 已提交
355 356
    _mm256_storeu_ps(y, tmp0);                                          \
    _mm256_storeu_ps(y + 8, tmp1);                                      \
357 358
  }

359
#define INTRI_GT8LT16_FLOAT(isa, expisa)                                     \
T
tensor-tang 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
  template <>                                                                \
  VSigmoidKernelImpl<float, isa, kGT8LT16>::VSigmoidKernelImpl(int d)        \
      : VSigmoidKernel<float>() {                                            \
    this->num_ = d;                                                          \
    this->end_ = AVX_FLOAT_BLOCK;                                            \
    this->rest_ = d - this->end_;                                            \
    vexp_ =                                                                  \
        KernelPool::Instance().template Get<VExpKernel<float>>(this->rest_); \
  }                                                                          \
  template <>                                                                \
  void VSigmoidKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,     \
                                                         float* y) const {   \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                      \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                      \
    __m256 tmp = _mm256_loadu_ps(x);                                         \
375
    INTRI_SIGMOID(tmp, min, max, expisa);                                    \
T
tensor-tang 已提交
376 377 378 379 380 381 382 383 384 385 386
    _mm256_storeu_ps(y, tmp);                                                \
    const float min_ = SIGMOID_THRESHOLD_MIN;                                \
    const float max_ = SIGMOID_THRESHOLD_MAX;                                \
    for (int i = this->end_; i < this->num_; ++i) {                          \
      y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]);           \
      y[i] = 0.f - y[i];                                                     \
    }                                                                        \
    vexp_->Compute(y + this->end_, y + this->end_);                          \
    for (int i = this->end_; i < this->num_; ++i) {                          \
      y[i] = 1.f / (1.f + y[i]);                                             \
    }                                                                        \
387 388
  }

389
#define INTRI_GT16_FLOAT(isa, expisa)                                        \
T
tensor-tang 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
  template <>                                                                \
  VSigmoidKernelImpl<float, isa, kGT16>::VSigmoidKernelImpl(int d)           \
      : VSigmoidKernel<float>() {                                            \
    this->num_ = d;                                                          \
    this->rest_ = d % AVX_FLOAT_BLOCK;                                       \
    this->end_ = d - this->rest_;                                            \
    vexp_ =                                                                  \
        KernelPool::Instance().template Get<VExpKernel<float>>(this->rest_); \
  }                                                                          \
  template <>                                                                \
  void VSigmoidKernelImpl<float, isa, kGT16>::Compute(const float* x,        \
                                                      float* y) const {      \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                      \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                      \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                  \
      __m256 tmp = _mm256_loadu_ps(x + i);                                   \
406
      INTRI_SIGMOID(tmp, min, max, expisa);                                  \
T
tensor-tang 已提交
407 408 409 410 411 412 413 414 415 416 417 418
      _mm256_storeu_ps(y + i, tmp);                                          \
    }                                                                        \
    const float min_ = SIGMOID_THRESHOLD_MIN;                                \
    const float max_ = SIGMOID_THRESHOLD_MAX;                                \
    for (int i = this->end_; i < this->num_; ++i) {                          \
      y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]);           \
      y[i] = 0.f - y[i];                                                     \
    }                                                                        \
    vexp_->Compute(y + this->end_, y + this->end_);                          \
    for (int i = this->end_; i < this->num_; ++i) {                          \
      y[i] = 1.f / (1.f + y[i]);                                             \
    }                                                                        \
419 420 421
  }

#ifdef __AVX__
422 423 424 425
INTRI8_FLOAT(jit::avx, detail::ExpAVX);
INTRI16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT8LT16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT16_FLOAT(jit::avx, detail::ExpAVX);
426 427
#endif
#ifdef __AVX2__
428 429 430
INTRI8_FLOAT(jit::avx2, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx2, detail::ExpAVX2);
// maybe use avx at gt8lt16 and gt16
431 432
#endif
#ifdef __AVX512F__
433 434 435
INTRI8_FLOAT(jit::avx512f, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx512f, detail::ExpAVX2);
// maybe use avx2 at gt8lt16 and gt16
436 437 438 439 440 441
#endif

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT
T
tensor-tang 已提交
442
#undef INTRI_VSIGMOID
443

T
tensor-tang 已提交
444
REGISTER_JITKERNEL(vsigmoid, VSigmoidKernel);
T
tensor-tang 已提交
445

T
tensor-tang 已提交
446 447 448 449 450
/* VTanh JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VTanhKernelImpl : public VTanhKernel<T> {
 public:
  explicit VTanhKernelImpl(int d) : VTanhKernel<T>() {
T
tensor-tang 已提交
451
    this->num_ = d;
T
tensor-tang 已提交
452 453 454 455
    vscal_ = KernelPool::Instance().template Get<VScalKernel<T>>(d);
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<T>>(d);
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<T>>(d);
  }
T
tensor-tang 已提交
456
  void Compute(const T* x, T* y) const override {
T
tensor-tang 已提交
457
    vscal_->Compute(static_cast<T>(2), x, y);
T
tensor-tang 已提交
458
    vsigmoid_->Compute(y, y);
T
tensor-tang 已提交
459 460
    vscal_->Compute(static_cast<T>(2), y);
    vaddbias_->Compute(static_cast<T>(-1), y, y);
T
tensor-tang 已提交
461 462 463 464 465 466 467 468
  }

 private:
  std::shared_ptr<const VScalKernel<T>> vscal_;
  std::shared_ptr<const VSigmoidKernel<T>> vsigmoid_;
  std::shared_ptr<const VAddBiasKernel<T>> vaddbias_;
};

469
#define INTRI_VTANH(tmp, expisa)                           \
T
tensor-tang 已提交
470 471
  tmp = _mm256_mul_ps(_mm256_set1_ps(-2.0f), tmp);         \
  tmp = _mm256_min_ps(tmp, _mm256_set1_ps(EXP_MAX_INPUT)); \
472
  tmp = expisa(tmp);                                       \
T
tensor-tang 已提交
473 474 475 476
  tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp);          \
  tmp = _mm256_div_ps(_mm256_set1_ps(2.0f), tmp);          \
  tmp = _mm256_sub_ps(tmp, _mm256_set1_ps(1.0f))

477
#define INTRI8_FLOAT(isa, expisa)                                           \
T
tensor-tang 已提交
478 479 480 481
  template <>                                                               \
  void VTanhKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp = _mm256_loadu_ps(x);                                        \
482
    INTRI_VTANH(tmp, expisa);                                               \
T
tensor-tang 已提交
483
    _mm256_storeu_ps(y, tmp);                                               \
T
tensor-tang 已提交
484 485
  }

486
#define INTRI16_FLOAT(isa, expisa)                                           \
T
tensor-tang 已提交
487 488 489 490 491
  template <>                                                                \
  void VTanhKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 tmp0 = _mm256_loadu_ps(x);                                        \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                    \
492 493
    INTRI_VTANH(tmp0, expisa);                                               \
    INTRI_VTANH(tmp1, expisa);                                               \
T
tensor-tang 已提交
494 495
    _mm256_storeu_ps(y, tmp0);                                               \
    _mm256_storeu_ps(y + 8, tmp1);                                           \
T
tensor-tang 已提交
496 497
  }

498
#define INTRI_GT8LT16_FLOAT(isa, expisa)                                      \
T
tensor-tang 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
  template <>                                                                 \
  VTanhKernelImpl<float, isa, kGT8LT16>::VTanhKernelImpl(int d)               \
      : VTanhKernel<float>() {                                                \
    this->num_ = d;                                                           \
    this->end_ = AVX_FLOAT_BLOCK;                                             \
    this->rest_ = d - this->end_;                                             \
    vscal_ =                                                                  \
        KernelPool::Instance().template Get<VScalKernel<float>>(this->rest_); \
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<float>>(   \
        this->rest_);                                                         \
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<float>>(   \
        this->rest_);                                                         \
  }                                                                           \
  template <>                                                                 \
  void VTanhKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,         \
                                                      float* y) const {       \
    __m256 tmp = _mm256_loadu_ps(x);                                          \
516
    INTRI_VTANH(tmp, expisa);                                                 \
T
tensor-tang 已提交
517 518 519
    _mm256_storeu_ps(y, tmp);                                                 \
    x += AVX_FLOAT_BLOCK;                                                     \
    y += AVX_FLOAT_BLOCK;                                                     \
T
tensor-tang 已提交
520
    vscal_->Compute(2.f, x, y);                                               \
T
tensor-tang 已提交
521
    vsigmoid_->Compute(y, y);                                                 \
T
tensor-tang 已提交
522 523
    vscal_->Compute(2.f, y);                                                  \
    vaddbias_->Compute(-1.f, y, y);                                           \
T
tensor-tang 已提交
524 525
  }

526
#define INTRI_GT16_FLOAT(isa, expisa)                                         \
T
tensor-tang 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
  template <>                                                                 \
  VTanhKernelImpl<float, isa, kGT16>::VTanhKernelImpl(int d)                  \
      : VTanhKernel<float>() {                                                \
    this->num_ = d;                                                           \
    this->rest_ = d % AVX_FLOAT_BLOCK;                                        \
    this->end_ = d - this->rest_;                                             \
    vscal_ =                                                                  \
        KernelPool::Instance().template Get<VScalKernel<float>>(this->rest_); \
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<float>>(   \
        this->rest_);                                                         \
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<float>>(   \
        this->rest_);                                                         \
  }                                                                           \
  template <>                                                                 \
  void VTanhKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y)  \
      const {                                                                 \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                   \
      __m256 tmp = _mm256_loadu_ps(x + i);                                    \
545
      INTRI_VTANH(tmp, expisa);                                               \
T
tensor-tang 已提交
546 547 548 549
      _mm256_storeu_ps(y + i, tmp);                                           \
    }                                                                         \
    x += this->end_;                                                          \
    y += this->end_;                                                          \
T
tensor-tang 已提交
550
    vscal_->Compute(2.f, x, y);                                               \
T
tensor-tang 已提交
551
    vsigmoid_->Compute(y, y);                                                 \
T
tensor-tang 已提交
552 553
    vscal_->Compute(2.f, y);                                                  \
    vaddbias_->Compute(-1.f, y, y);                                           \
T
tensor-tang 已提交
554 555 556
  }

#ifdef __AVX__
557 558 559 560
INTRI8_FLOAT(jit::avx, detail::ExpAVX);
INTRI16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT8LT16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT16_FLOAT(jit::avx, detail::ExpAVX);
T
tensor-tang 已提交
561 562
#endif
#ifdef __AVX2__
563 564
INTRI8_FLOAT(jit::avx2, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx2, detail::ExpAVX2);
T
tensor-tang 已提交
565 566 567
// maybe use avx at gt8lt16 and gt16
#endif
#ifdef __AVX512F__
568 569
INTRI8_FLOAT(jit::avx512f, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx512f, detail::ExpAVX2);
T
tensor-tang 已提交
570 571 572 573 574 575 576 577 578
// maybe use avx at gt8lt16 and gt16
#endif

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT
#undef INTRI_VTANH

T
tensor-tang 已提交
579
REGISTER_JITKERNEL(vtanh, VTanhKernel);
T
tensor-tang 已提交
580

T
tensor-tang 已提交
581
#undef JITKERNEL_NEW_ACT_IMPL
582

T
tensor-tang 已提交
583 584 585 586
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle