eigen.h 5.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yi Wang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/tensor.h"
Y
Yi Wang 已提交
18 19 20 21 22 23 24 25
#include "unsupported/Eigen/CXX11/Tensor"

namespace paddle {
namespace framework {

// EigenDim converts paddle::platform::DDim into Eigen::DSizes.
template <int D>
struct EigenDim {
Q
qijun 已提交
26
  using Type = Eigen::DSizes<Eigen::DenseIndex, D>;
Y
Yi Wang 已提交
27 28

  static Type From(const DDim& dims) {
29 30 31 32 33
    PADDLE_ENFORCE_EQ(arity(dims), D,
                      platform::errors::InvalidArgument(
                          "Input dimension size should be equal to %d, but "
                          "received dimension size is %d.",
                          arity(dims), D));
Y
Yi Wang 已提交
34
    Type ret;
Q
qijun 已提交
35
    for (int64_t d = 0; d < arity(dims); d++) {
Y
Yi Wang 已提交
36 37 38 39 40 41 42
      ret[d] = dims[d];
    }
    return ret;
  }
};

// Interpret paddle::platform::Tensor as EigenTensor and EigenConstTensor.
43 44
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
Y
Yi Wang 已提交
45
struct EigenTensor {
46 47 48
  // TODO(qijun) Now, default type in unaligned, and we will make a benchmark on
  // the speed of aligned and unaligned version in future.
  using Type = Eigen::TensorMap<Eigen::Tensor<T, D, MajorType, IndexType>>;
Y
Yi Wang 已提交
49 50

  using ConstType =
51
      Eigen::TensorMap<Eigen::Tensor<const T, D, MajorType, IndexType>>;
Y
Yi Wang 已提交
52

D
dzhwinter 已提交
53
  static Type From(Tensor& tensor, DDim dims) {  // NOLINT
Y
Yi Wang 已提交
54 55 56
    return Type(tensor.data<T>(), EigenDim<D>::From(dims));
  }

D
dzhwinter 已提交
57 58 59
  static Type From(Tensor& tensor) {  // NOLINT
    return From(tensor, tensor.dims_);
  }  // NOLINT
Y
Yi Wang 已提交
60 61 62 63 64 65 66 67 68 69

  static ConstType From(const Tensor& tensor, DDim dims) {
    return ConstType(tensor.data<T>(), EigenDim<D>::From(dims));
  }

  static ConstType From(const Tensor& tensor) {
    return From(tensor, tensor.dims_);
  }
};

70 71
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
F
WIP  
fengjiayi 已提交
72
struct EigenMatrix : public EigenTensor<T, 2, MajorType, IndexType> {
D
dzhwinter 已提交
73 74
  static typename EigenMatrix::Type Reshape(Tensor& tensor,  // NOLINT
                                            int num_col_dims) {
F
WIP  
fengjiayi 已提交
75
    int rank = tensor.dims_.size();
76 77 78 79 80
    PADDLE_ENFORCE_EQ((num_col_dims > 0 && num_col_dims < rank), true,
                      platform::errors::InvalidArgument(
                          "Input dimension number(num_col_dims) must be "
                          "between 0 and %d, but received number is %d.",
                          rank, num_col_dims));
81
    return EigenMatrix::From(tensor,
F
fengjiayi 已提交
82
                             flatten_to_2d(tensor.dims(), num_col_dims));
F
WIP  
fengjiayi 已提交
83
  }
F
fengjiayi 已提交
84 85

  static typename EigenMatrix::ConstType Reshape(const Tensor& tensor,
F
fengjiayi 已提交
86
                                                 int num_col_dims) {
F
fengjiayi 已提交
87
    int rank = tensor.dims_.size();
88 89 90 91 92
    PADDLE_ENFORCE_EQ((num_col_dims > 0 && num_col_dims < rank), true,
                      platform::errors::InvalidArgument(
                          "Input dimension number(num_col_dims) must be "
                          "between 0 and %d, but received number is %d.",
                          rank, num_col_dims));
F
fengjiayi 已提交
93
    return EigenMatrix::From(tensor,
F
fengjiayi 已提交
94
                             flatten_to_2d(tensor.dims(), num_col_dims));
F
fengjiayi 已提交
95
  }
F
WIP  
fengjiayi 已提交
96
};
97

98 99 100
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
struct EigenVector : public EigenTensor<T, 1, MajorType, IndexType> {
101
  // Flatten reshapes a Tensor into an EigenVector.
D
dzhwinter 已提交
102
  static typename EigenVector::Type Flatten(Tensor& tensor) {  // NOLINT
F
fengjiayi 已提交
103
    return EigenVector::From(tensor, {product(tensor.dims_)});
Q
qijun 已提交
104 105
  }

D
dzhwinter 已提交
106 107
  static typename EigenVector::ConstType Flatten(
      const Tensor& tensor) {  // NOLINT
F
fengjiayi 已提交
108
    return EigenVector::From(tensor, {product(tensor.dims_)});
Q
qijun 已提交
109
  }
Y
Yi Wang 已提交
110 111
};

L
liaogang 已提交
112 113 114 115 116 117 118 119 120
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
struct EigenScalar {
  // Scalar tensor (implemented as a rank-0 tensor) of scalar type T.
  using Type = Eigen::TensorMap<
      Eigen::TensorFixedSize<T, Eigen::Sizes<>, MajorType, IndexType>>;
  using ConstType = Eigen::TensorMap<
      Eigen::TensorFixedSize<const T, Eigen::Sizes<>, MajorType, IndexType>>;

D
dzhwinter 已提交
121
  static Type From(Tensor& tensor) { return Type(tensor.data<T>()); }  // NOLINT
L
liaogang 已提交
122 123 124 125 126 127

  static ConstType From(const Tensor& tensor) {
    return ConstType(tensor.data<T>());
  }
};

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
// Define Tensor with 32-bit index.
template <typename T, int D, int MajorType = Eigen::RowMajor>
using Tensor32BitIndex =
    Eigen::TensorMap<Eigen::Tensor<T, D, MajorType, int>, Eigen::Aligned>;

template <typename DSizes>
Eigen::DSizes<int, DSizes::count> To32BitDims(const DSizes& in) {
  Eigen::DSizes<int, DSizes::count> out;
  for (int i = 0; i < DSizes::count; ++i) {
    out[i] = in[i];
  }
  return out;
}

template <typename EigenTensor>
Tensor32BitIndex<typename EigenTensor::Scalar, EigenTensor::NumIndices>
To32BitIndex(EigenTensor in) {
  using RetType =
      Tensor32BitIndex<typename EigenTensor::Scalar, EigenTensor::NumIndices>;
  return RetType(in.data(), To32BitDims(in.dimensions()));
}

Y
Yi Wang 已提交
150 151
}  // namespace framework
}  // namespace paddle