test_conv2d_transpose_op.py 8.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
deconv  
zchen0211 已提交
15 16
import unittest
import numpy as np
17

18
import paddle.fluid.core as core
19
from .op_test import OpTest
Z
deconv  
zchen0211 已提交
20 21


C
chengduoZH 已提交
22
def conv2dtranspose_forward_naive(input_, filter_, attrs):
Z
deconv  
zchen0211 已提交
23
    in_n, in_c, in_h, in_w = input_.shape
Y
Yibing Liu 已提交
24 25
    f_c, f_out_c, f_h, f_w = filter_.shape
    groups = attrs['groups']
Z
deconv  
zchen0211 已提交
26
    assert in_c == f_c
Y
Yibing Liu 已提交
27 28
    out_c = f_out_c * groups
    sub_in_c = in_c / groups
Z
deconv  
zchen0211 已提交
29

C
chengduoZH 已提交
30 31 32 33 34 35
    stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[
        'dilations']
    d_bolck_h = dilations[0] * (f_h - 1) + 1
    d_bolck_w = dilations[1] * (f_w - 1) + 1
    out_h = (in_h - 1) * stride[0] + d_bolck_h
    out_w = (in_w - 1) * stride[1] + d_bolck_w
Z
deconv  
zchen0211 已提交
36 37 38 39 40 41

    out = np.zeros((in_n, out_c, out_h, out_w))

    for n in range(in_n):
        for i in range(in_h):
            for j in range(in_w):
Y
Yibing Liu 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
                for g in range(groups):
                    input_masked = input_[n, g * sub_in_c:(g + 1) * sub_in_c, i,
                                          j]  # (c)
                    input_masked = np.reshape(input_masked, (sub_in_c, 1, 1))
                    input_masked = np.tile(input_masked, (1, f_h, f_w))

                    for k in range(f_out_c):
                        tmp_out = np.sum(
                            input_masked *
                            filter_[g * sub_in_c:(g + 1) * sub_in_c, k, :, :],
                            axis=0)
                        i1, i2 = i * stride[0], i * stride[0] + d_bolck_h
                        j1, j2 = j * stride[0], j * stride[0] + d_bolck_h
                        out[n, g * f_out_c + k, i1:i2:dilations[0], j1:j2:
                            dilations[1]] += tmp_out
Z
deconv  
zchen0211 已提交
57

C
chengduoZH 已提交
58
    out = out[:, :, pad[0]:out_h - pad[0], pad[1]:out_w - pad[1]]
Z
deconv  
zchen0211 已提交
59 60 61
    return out


Z
zchen0211 已提交
62
class TestConv2dTransposeOp(OpTest):
Z
deconv  
zchen0211 已提交
63
    def setUp(self):
Z
zchen0211 已提交
64
        # init as conv transpose
65
        self.use_cudnn = False
Z
deconv  
zchen0211 已提交
66 67 68 69 70 71 72 73 74 75
        self.init_op_type()
        self.init_test_case()

        input_ = np.random.random(self.input_size).astype("float32")
        filter_ = np.random.random(self.filter_size).astype("float32")

        self.inputs = {'Input': input_, 'Filter': filter_}
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
Y
Yibing Liu 已提交
76
            'groups': self.groups,
77 78 79
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
            'data_format': 'AnyLayout'  # TODO(dzhwinter) : should be fix latter
Z
deconv  
zchen0211 已提交
80
        }
C
chengduoZH 已提交
81 82 83 84

        output = conv2dtranspose_forward_naive(input_, filter_,
                                               self.attrs).astype('float32')

Z
deconv  
zchen0211 已提交
85 86 87
        self.outputs = {'Output': output}

    def test_check_output(self):
88 89 90 91 92
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
Z
deconv  
zchen0211 已提交
93

Z
zchen0211 已提交
94
    def test_check_grad_no_input(self):
95 96 97 98 99 100 101 102 103 104 105 106 107
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Filter'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Input']))
        else:
            self.check_grad(
                ['Filter'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Input']))
Z
zchen0211 已提交
108 109

    def test_check_grad_no_filter(self):
110 111 112 113 114 115 116 117 118 119 120 121 122
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Input'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Filter']))
        else:
            self.check_grad(
                ['Input'],
                'Output',
                max_relative_error=0.02,
                no_grad_set=set(['Filter']))
Z
deconv  
zchen0211 已提交
123

Z
zchen0211 已提交
124
    def test_check_grad(self):
125 126 127 128 129 130 131 132 133 134
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place,
                set(['Input', 'Filter']),
                'Output',
                max_relative_error=0.02)
        else:
            self.check_grad(
                set(['Input', 'Filter']), 'Output', max_relative_error=0.02)
C
chengduoZH 已提交
135 136 137 138 139

    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
140
        self.groups = 1
C
chengduoZH 已提交
141 142 143 144 145 146
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.op_type = "conv2d_transpose"
Z
deconv  
zchen0211 已提交
147

Z
zchen0211 已提交
148

C
chengduoZH 已提交
149 150 151 152 153
class TestWithPad(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
154
        self.groups = 1
C
chengduoZH 已提交
155 156 157 158 159
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


Y
Yibing Liu 已提交
160 161 162 163 164 165 166 167 168 169 170
class TestWithGroups(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3]


C
chengduoZH 已提交
171 172 173 174 175
class TestWithStride(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
176
        self.groups = 1
C
chengduoZH 已提交
177 178 179 180 181
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
chengduoZH 已提交
182 183 184 185
class TestWithDilation(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
Y
Yibing Liu 已提交
186
        self.groups = 1
C
chengduoZH 已提交
187 188 189 190 191 192
        self.dilations = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
chengduoZH 已提交
193
# ------------ test_cudnn ------------
194 195
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
196
class TestCUDNN(TestConv2dTransposeOp):
Z
deconv  
zchen0211 已提交
197
    def init_op_type(self):
198 199
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
Z
zchen0211 已提交
200

Z
deconv  
zchen0211 已提交
201

202 203
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
204
class TestCUDNNWithPad(TestWithPad):
C
chengduoZH 已提交
205 206 207
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
Y
Yibing Liu 已提交
208
        self.groups = 1
C
chengduoZH 已提交
209 210 211 212 213 214
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
215 216
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
217 218


219 220
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
221
class TestCUDNNWithStride(TestWithStride):
C
chengduoZH 已提交
222 223 224
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
Y
Yibing Liu 已提交
225
        self.groups = 1
C
chengduoZH 已提交
226 227 228 229 230 231
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
232 233
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
234 235


236 237
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
class TestCUDNNWithGroups(TestWithGroups):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


253 254 255 256 257 258 259 260 261 262 263 264 265
class TestDepthwiseConvTranspose(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 8, 16, 16]  # NCHW
        self.groups = 8
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] / self.groups
        self.filter_size = [self.input_size[1], f_c, 4, 4]
        self.op_type = "depthwise_conv2d_transpose"


266 267
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
268
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
269 270 271 272 273 274 275 276 277
#     def init_test_case(self):
#         self.pad = [1, 1]
#         self.stride = [2, 2]
#         self.dilations = [2, 2]
#         self.input_size = [2, 3, 5, 5]  # NCHW
#         f_c = self.input_size[1]
#         self.filter_size = [f_c, 6, 3, 3]
#
#     def init_op_type(self):
278
#         self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
279

Z
deconv  
zchen0211 已提交
280 281
if __name__ == '__main__':
    unittest.main()