executor_thread_worker.h 8.0 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <map>
#include <memory>
#include <mutex>  // NOLINT
#include <set>
#include <string>
#include <thread>  // NOLINT
#include <vector>
#include "paddle/fluid/framework/data_feed.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
H
heqiaozhi 已提交
28
#ifdef PADDLE_WITH_PSLIB
29
#include "pslib.h"
H
heqiaozhi 已提交
30
#endif
W
Wang Guibao 已提交
31 32 33

namespace paddle {
namespace framework {
34

W
Wang Guibao 已提交
35
void CreateTensor(Variable* var, proto::VarType::Type var_type);
H
heqiaozhi 已提交
36 37
#ifdef PADDLE_WITH_PSLIB
const static uint32_t MAX_FEASIGN_NUM = 1000 * 100 * 100;
W
Wang Guibao 已提交
38

39
struct AsyncWorkerParamConfig {
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
  int slot_dim;
  int fea_dim;
  int32_t tmp_push_dense_wait_times;
  int32_t tmp_push_sparse_wait_times;
  
  std::vector<std::string> skip_op;
  
  std::map<uint64_t, std::vector<std::string>> dense_variable_name;
  std::map<uint64_t, std::vector<std::string>> dense_gradient_variable_name;
  std::vector<int>               dense_table_id;
  // fea_dim for each dense table
  std::vector<uint32_t>          dense_table_size;
  std::vector<int>               sparse_table_id;
  std::map<uint64_t, std::vector<std::string>> slot_input_vec;
  std::map<uint64_t, std::vector<std::string>> gradient_var;
  std::map<std::string, uint64_t> slot_alias_to_table;
56 57 58 59 60 61 62 63 64 65 66 67
};

struct DensePullThreadParam {
    std::shared_ptr<paddle::ps::PSClient> ps_client;
    int threshold;
    int training_thread_num;
    Scope* root_scope;
    std::map<uint64_t, std::vector<std::string>>* dense_params;
    int sleep_time_ms = 2;
};

class DensePullThread {
68 69
 public:
  explicit DensePullThread(const DensePullThreadParam& param) :
D
dongdaxiang 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83
  _running(false) {
    _ps_client = param.ps_client;
    _threshold = param.threshold;
    _thread_num = param.training_thread_num;
    _root_scope = param.root_scope;
    _sleep_time_ms = param.sleep_time_ms;
    
    for (auto& t : *param.dense_params) {
      _dense_variable_name[t.first].insert(
          _dense_variable_name[t.first].end(),
          t.second.begin(), t.second.end());
      _training_versions[t.first].resize(_thread_num, 0);
      _last_versions[t.first] = 0;
      _current_version[t.first] = 0;
84
    }
D
dongdaxiang 已提交
85 86 87 88 89 90 91 92
  }
  
  int start();
  
  void stop() {
    if (_running) {
      _running = false;
      _t.join();
93
    }
D
dongdaxiang 已提交
94 95 96 97 98 99 100 101
  }
  
  void increase_thread_version(int thread_id, uint64_t table_id);
  void reset_thread_version(uint64_t table_id);
  std::future<int32_t> pull_dense(uint64_t table_id);
  void pull_dense2(uint64_t table_id);
  void wait_all();
  
102
 private:
D
dongdaxiang 已提交
103 104 105
  void run();
  bool check_update_param(uint64_t table_id);
  
106
 private:
D
dongdaxiang 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  std::shared_ptr<paddle::ps::PSClient> _ps_client;
  int _thread_num;
  int _threshold;
  int _sleep_time_ms;
  Scope* _root_scope;
  bool _running;

  std::map<uint64_t, uint64_t> _last_versions;
  std::map<uint64_t, uint64_t> _current_version;
  std::mutex  _mutex_for_version;
  std::map<uint64_t, std::vector<uint64_t>> _training_versions;
  std::map<uint64_t, std::vector<std::string>> _dense_variable_name;
  
  std::thread _t;
  
  std::vector<::std::future<int32_t>> _pull_dense_status;
  
  std::map<uint64_t, std::vector<paddle::ps::Region>> _regions;
  uint32_t    _pull_dense_fail_times = 0;
  
  std::vector<float>  _base_norm_param;
  std::vector<float>  _mean;
  std::vector<float>  _scale;
  float _squared_sum_epsilon = 1e-4;
  std::mutex _mutex_for_mean_scale;
  
  float _total_batch_num = 0;
134
};
H
heqiaozhi 已提交
135 136
#endif

W
Wang Guibao 已提交
137 138
class ExecutorThreadWorker {
 public:
D
dongdaxiang 已提交
139 140
ExecutorThreadWorker()
    : thread_id_(-1), root_scope_(NULL), thread_scope_(NULL), debug_(false) {}
141
  virtual ~ExecutorThreadWorker() {}
D
dongdaxiang 已提交
142
  
W
Wang Guibao 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
  void CreateThreadResource(const framework::ProgramDesc& program,
                            const paddle::platform::Place& place);
  void SetThreadId(int tid);
  void SetDebug(const bool debug) { debug_ = debug; }
  void SetRootScope(Scope* g_scope);
  // set cpu device in this function
  // cpu binding is used by default
  void SetDevice();
  // since we read data into memory that can not be accessed by program
  // we need to bind memory of data with corresponding variables in program
  // this function should be called after data feed is set
  void BindingDataFeedMemory();
  // set data feed declared in executor
  void SetDataFeed(const std::shared_ptr<DataFeed>& datafeed);
  // A multi-thread training function
158
  virtual void TrainFiles();
W
Wang Guibao 已提交
159 160
  // set fetch variable names from python interface assigned by users
  void SetFetchVarNames(const std::vector<std::string>& fetch_var_names);
H
heqiaozhi 已提交
161
#ifdef PADDLE_WITH_PSLIB
162
  virtual void SetPSlibPtr(
D
dongdaxiang 已提交
163
      std::shared_ptr<paddle::distributed::PSlib> pslib_ptr) {}
164 165 166 167
  virtual void SetPullDenseThread(
      std::shared_ptr<DensePullThread> dpt) {}
  virtual void SetParamConfig(
      AsyncWorkerParamConfig * param_config) {}
H
heqiaozhi 已提交
168
#endif
169

W
Wang Guibao 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
 private:
  void CreateThreadScope(const framework::ProgramDesc& program);
  void CreateThreadOperators(const framework::ProgramDesc& program);
  void SetMainProgram(const ProgramDesc& main_program_desc);
  void SetPlace(const paddle::platform::Place& place);

 protected:
  // thread index
  std::shared_ptr<DataFeed> thread_reader_;  // shared queue, thread buffer
  int thread_id_;
  // operator name
  std::vector<std::string> op_names_;
  // thread level, local operators for forward and backward
  std::vector<OperatorBase*> ops_;
  // main program for training
  std::unique_ptr<framework::ProgramDesc> main_program_;
  // execution place
  platform::Place place_;
  // root scope for model parameters
  Scope* root_scope_;
  // a thread scope, father scope is global score which is shared
  Scope* thread_scope_;
  std::vector<std::string> fetch_var_names_;
  std::vector<std::vector<float>> fetch_values_;
  bool debug_;
};

H
heqiaozhi 已提交
197
#ifdef PADDLE_WITH_PSLIB
198
class AsyncExecutorThreadWorker: public ExecutorThreadWorker {
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
 public:
  AsyncExecutorThreadWorker() {}
  virtual ~AsyncExecutorThreadWorker() {}
  void SetPSlibPtr(std::shared_ptr<paddle::distributed::PSlib> pslib_ptr);
  void SetPullDenseThread(std::shared_ptr<DensePullThread> dpt);
  void SetParamConfig(AsyncWorkerParamConfig* param_config);
  void TrainFiles();
  void TrainOneNetwork();
  void PrepareParams();
  void UpdateParams();
  void PullSparse(int table_id);
  void FillSparse(int table_id);
  void PushSparse(int table_id);
  void PushDense(int table_id);
  
  void check_pull_push_memory(
      const std::vector<uint64_t>& features,
      std::vector<float*>& push_g,
      int dim);
  void check_pull_push_memory(const std::vector<uint64_t>& features,
                              std::vector<std::vector<float>>& push_g,
                              int dim);
D
dongdaxiang 已提交
221 222
  void collect_feasign_info(int table_id);
  
223
 private:
D
dongdaxiang 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
  struct FeasignInfo {
    uint32_t slot;
    uint32_t ins;
    int64_t label;
  };
  
  std::map<uint64_t, std::vector<uint64_t>>       _features;
  std::map<uint64_t, std::vector<FeasignInfo>>    _fea_info;
  std::map<uint64_t, std::vector<std::vector<float>>> _feature_value;
  std::map<uint64_t, std::vector<std::vector<float>>> _feature_push_value;
  
  
  std::shared_ptr<paddle::distributed::PSlib>     _pslib_ptr;
  
  std::shared_ptr<DensePullThread>                _pull_dense_thread;
  
  std::vector<::std::future<int32_t>>             _pull_sparse_status;
  std::vector<::std::future<int32_t>>             _pull_dense_status;
  std::vector<::std::future<int32_t>>             _push_sparse_status;
  std::vector<::std::future<int32_t>>             _push_dense_status;
  
  AsyncWorkerParamConfig*                         _param_config;
  
247
};
H
heqiaozhi 已提交
248
#endif
249

W
Wang Guibao 已提交
250 251
}  // namespace framework
}  // namespace paddle