activation_mkldnn_op.cc 10.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/operators/activation_op.h"
K
Krzysztof Binias 已提交
17
#include "paddle/fluid/operators/mkldnn_activation_op.h"
K
Krzysztof Binias 已提交
18
#include "paddle/fluid/platform/mkldnn_helper.h"
19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;

namespace {
K
Krzysztof Binias 已提交
27 28
std::string gethash(const mkldnn::memory::dims &operand_dims,
                    const mkldnn::algorithm algorithm) {
K
Krzysztof Binias 已提交
29 30 31 32 33 34 35 36
  auto dim2str = [](const mkldnn::memory::dims &operand_dims) {
    std::string dstr = "";
    for (size_t i = 0; i < operand_dims.size(); ++i) {
      dstr += std::to_string(operand_dims[i]) + "-";
    }
    return dstr;
  };
  return dim2str(operand_dims) + std::to_string(algorithm);
K
Krzysztof Binias 已提交
37 38
}

39 40 41 42 43 44 45 46 47 48 49 50 51 52
template <typename T, typename ExecContext>
void eltwise_forward(const ExecContext &ctx, mkldnn::algorithm algorithm,
                     const T alpha = 0, const T beta = 0) {
  PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                 "It must use CPUPlace.");

  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
  const auto &mkldnn_engine = dev_ctx.GetEngine();

  // get buffers
  const auto *src = ctx.template Input<Tensor>("X");
  const auto *src_data = src->template data<T>();

  auto *dst = ctx.template Output<Tensor>("Out");
K
Krzysztof Binias 已提交
53
  T *dst_data = dst->template mutable_data<T>(ctx.GetPlace());
54 55

  // get memory dim
56 57
  PADDLE_ENFORCE(src->dims().size() == 2 || src->dims().size() == 4,
                 "Input dim must be with 2 or 4");
58 59
  std::vector<int> src_tz = framework::vectorize2int(src->dims());

K
Krzysztof Binias 已提交
60
  const std::string key = gethash(src_tz, algorithm);
K
Krzysztof Binias 已提交
61 62
  const std::string key_src_data =
      key + ctx.op().Output("Out") + "@eltwise_fwd_src_data";
K
Krzysztof Binias 已提交
63 64
  const std::string key_src_mem = key + "@eltwise_fwd_src_mem";
  const std::string key_dst_mem = key + "@eltwise_fwd_dst_mem";
K
Krzysztof Binias 已提交
65 66
  const std::string key_fwd = key + "@eltwise_fwd";

K
Krzysztof Binias 已提交
67 68
  auto p_fwd = std::static_pointer_cast<mkldnn::eltwise_forward>(
      dev_ctx.GetBlob(key_fwd));
K
Krzysztof Binias 已提交
69

K
Krzysztof Binias 已提交
70 71 72 73
  // save input data to be referred in backward path
  auto p_src_data = std::make_shared<const T *>(src_data);
  dev_ctx.SetBlob(key_src_data, p_src_data);

K
Krzysztof Binias 已提交
74
  if (p_fwd == nullptr) {
K
Krzysztof Binias 已提交
75 76 77 78 79 80 81 82
    // create memory description
    auto data_md = src_tz.size() == 2
                       ? platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
                                                 mkldnn::memory::format::nc)
                       : platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
                                                 mkldnn::memory::format::nchw);

    // create memory primitives
K
Krzysztof Binias 已提交
83 84
    auto p_src_mem = std::make_shared<mkldnn::memory>(mkldnn::memory(
        {data_md, mkldnn_engine}, platform::to_void_cast(src_data)));
K
Krzysztof Binias 已提交
85 86
    dev_ctx.SetBlob(key_src_mem, p_src_mem);

K
Krzysztof Binias 已提交
87 88
    auto p_dst_mem = std::make_shared<mkldnn::memory>(mkldnn::memory(
        {data_md, mkldnn_engine}, platform::to_void_cast(dst_data)));
K
Krzysztof Binias 已提交
89 90 91 92 93 94
    dev_ctx.SetBlob(key_dst_mem, p_dst_mem);

    auto fwd_desc = mkldnn::eltwise_forward::desc(
        mkldnn::prop_kind::forward_training, algorithm, data_md, alpha, beta);
    auto p_fwd_pd = std::make_shared<mkldnn::eltwise_forward::primitive_desc>(
        fwd_desc, mkldnn_engine);
K
Krzysztof Binias 已提交
95 96
    const std::string key_fwd_pd = key + "eltwise_fwd_pd";
    dev_ctx.SetBlob(key_fwd_pd, p_fwd_pd);
K
Krzysztof Binias 已提交
97
    p_fwd = std::make_shared<mkldnn::eltwise_forward>(
K
Krzysztof Binias 已提交
98
        *p_fwd_pd, *(p_src_mem.get()), *(p_dst_mem.get()));
K
Krzysztof Binias 已提交
99 100
    dev_ctx.SetBlob(key_fwd, p_fwd);
  } else {
K
Krzysztof Binias 已提交
101 102 103 104 105 106 107 108 109 110 111 112
    // primitives already exist
    auto p_src_mem =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_src_mem));
    PADDLE_ENFORCE(p_src_mem != nullptr,
                   "Fail to find eltwise p_src_mem in device context.");
    auto p_dst_mem =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_dst_mem));
    PADDLE_ENFORCE(p_dst_mem != nullptr,
                   "Fail to find eltwise p_src_mem in device context.");

    p_src_mem->set_data_handle(platform::to_void_reinterpret_cast(src_data));
    p_dst_mem->set_data_handle(dst_data);
K
Krzysztof Binias 已提交
113
  }
114 115

  // push primitive to stream and wait until it's executed
K
Krzysztof Binias 已提交
116
  std::vector<mkldnn::primitive> pipeline = {*(p_fwd.get())};
117 118 119 120 121 122 123 124 125 126
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}

template <typename T, typename ExecContext>
void eltwise_grad(const ExecContext &ctx, mkldnn::algorithm algorithm,
                  const T alpha = 0, const T beta = 0) {
  auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
  const auto &mkldnn_engine = dev_ctx.GetEngine();

  // get buffers
K
Krzysztof Binias 已提交
127
  const auto *out = ctx.template Input<Tensor>("Out");
128 129 130 131 132 133 134 135 136

  auto *dout = ctx.template Input<Tensor>(framework::GradVarName("Out"));
  const auto *diff_dst = dout->template data<T>();

  auto *dx =
      ctx.template Output<framework::Tensor>(framework::GradVarName("X"));
  const T *diff_src = dx->template mutable_data<T>(ctx.GetPlace());

  // get memory dim
K
Krzysztof Binias 已提交
137 138 139
  std::vector<int> src_tz = framework::vectorize2int(out->dims());

  const std::string key = gethash(src_tz, algorithm);
K
Krzysztof Binias 已提交
140 141 142 143
  const std::string key_diff_src_mem = key + "@eltwise_diff_src_mem";
  const std::string key_diff_dst_mem = key + "@eltwise_diff_dst_mem";
  const std::string key_grad = key + "@eltwise_grad";

K
Krzysztof Binias 已提交
144 145
  const std::string key_src_data =
      key + ctx.op().Input("Out") + "@eltwise_fwd_src_data";
K
Krzysztof Binias 已提交
146 147 148 149 150 151 152 153
  const auto p_src_data =
      std::static_pointer_cast<T *>(dev_ctx.GetBlob(key_src_data));

  const std::string key_src_mem = key + "@eltwise_fwd_src_mem";
  auto p_src_mem =
      std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(key_src_mem));
  p_src_mem->set_data_handle(*p_src_data.get());

K
Krzysztof Binias 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
  auto p_grad = std::static_pointer_cast<mkldnn::eltwise_forward::primitive>(
      dev_ctx.GetBlob(key_grad));

  if (p_grad == nullptr) {
    // create memory description
    auto data_md = src_tz.size() == 2
                       ? platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
                                                 mkldnn::memory::format::nc)
                       : platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
                                                 mkldnn::memory::format::nchw);

    // create memory primitives
    std::shared_ptr<void> p_diff_src_mem =
        std::make_shared<mkldnn::memory>(mkldnn::memory(
            {data_md, mkldnn_engine}, platform::to_void_cast(diff_src)));
    dev_ctx.SetBlob(key_diff_src_mem, p_diff_src_mem);
    std::shared_ptr<void> p_diff_dst_mem =
        std::make_shared<mkldnn::memory>(mkldnn::memory(
            {data_md, mkldnn_engine}, platform::to_void_cast(diff_dst)));
    dev_ctx.SetBlob(key_diff_dst_mem, p_diff_dst_mem);

    auto bwd_desc = mkldnn::eltwise_backward::desc(algorithm, data_md, data_md,
                                                   alpha, beta);

    const std::string key_fwd_pd = key + "eltwise_fwd_pd";
    auto *p_fwd_pd = static_cast<mkldnn::eltwise_forward::primitive_desc *>(
        dev_ctx.GetBlob(key_fwd_pd).get());

    auto eltwise_bwd_prim_desc = mkldnn::eltwise_backward::primitive_desc(
        bwd_desc, mkldnn_engine, *p_fwd_pd);

    p_grad = std::make_shared<mkldnn::eltwise_backward>(
        eltwise_bwd_prim_desc, *static_cast<mkldnn::memory *>(p_src_mem.get()),
        *(static_cast<mkldnn::memory *>(p_diff_dst_mem.get())),
        *(static_cast<mkldnn::memory *>(p_diff_src_mem.get())));
  } else {
    // primitives already exist
    auto p_diff_src_mem = std::static_pointer_cast<mkldnn::memory>(
        dev_ctx.GetBlob(key_diff_src_mem));
    auto p_diff_dst_mem = std::static_pointer_cast<mkldnn::memory>(
        dev_ctx.GetBlob(key_diff_dst_mem));

    p_diff_src_mem->set_data_handle(
        platform::to_void_reinterpret_cast(diff_src));
    p_diff_dst_mem->set_data_handle(
        platform::to_void_reinterpret_cast(diff_dst));
  }
201 202

  // push primitive to stream and wait until it's executed
K
Krzysztof Binias 已提交
203
  std::vector<mkldnn::primitive> pipeline = {*(p_grad.get())};
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}
}  // anonymous namespace

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationFunc : public BaseActivationFunctor<T> {
  template <typename ExecContext>
  void operator()(const ExecContext &ctx) const {
    eltwise_forward<T>(ctx, algorithm);
  }
};

template <typename T, mkldnn::algorithm algorithm>
struct MKLDNNActivationGradFunc : public BaseActivationFunctor<T> {
  template <typename ExecContext>
  void operator()(const ExecContext &ctx) const {
    eltwise_grad<T>(ctx, algorithm);
  }
};

template <typename T>
using ReluMkldnnFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
using TanhMkldnnFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
using SqrtMkldnnFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
using AbsMkldnnFunctor =
    MKLDNNActivationFunc<T, mkldnn::algorithm::eltwise_abs>;

template <typename T>
using ReluMkldnnGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_relu>;

template <typename T>
using TanhMkldnnGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_tanh>;

template <typename T>
using SqrtMkldnnGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_sqrt>;

template <typename T>
using AbsMkldnnGradFunctor =
    MKLDNNActivationGradFunc<T, mkldnn::algorithm::eltwise_abs>;
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

#define REGISTER_ACTIVATION_MKLDNN_KERNEL(act_type, functor, grad_functor) \
  REGISTER_OP_KERNEL(act_type, MKLDNN, ::paddle::platform::CPUPlace,       \
                     ops::MKLDNNActivationKernel<ops::functor<float>>);    \
  REGISTER_OP_KERNEL(                                                      \
      act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace,               \
      ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);

K
Krzysztof Binias 已提交
267 268 269 270 271
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro)            \
  __macro(relu, ReluMkldnnFunctor, ReluMkldnnGradFunctor); \
  __macro(tanh, TanhMkldnnFunctor, TanhMkldnnGradFunctor); \
  __macro(sqrt, SqrtMkldnnFunctor, SqrtMkldnnGradFunctor); \
  __macro(abs, AbsMkldnnFunctor, AbsMkldnnGradFunctor);
272 273

FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);