unpooling.cu 5.7 KB
Newer Older
S
sweetsky0901 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sweetsky0901 已提交
15
#include "paddle/operators/math/unpooling.h"
S
sweetsky0901 已提交
16 17 18 19 20
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {
namespace math {
S
sweetsky0901 已提交
21
template <typename T>
S
sweetsky0901 已提交
22
__global__ void KernelUnpool2dMax(const int nthreads, const T* input_data,
S
sweetsky0901 已提交
23 24 25 26 27 28
                                  const int* indices_data,
                                  const int input_height,
                                  const int input_width,
                                  const int channels, T* output_data,
                                  const int output_height,
                                  const int output_width) {
S
sweetsky0901 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
  int in_n_stride = input_height * input_width * channels;
  int in_c_stride = input_height * input_width;
  int out_n_stride = output_height * output_width * channels;
  int out_c_stride = output_height * output_width;
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (int i = index; i < nthreads; i += offset) {
    int bidx = i / in_n_stride;
    int boffset = i % in_n_stride;
    int cidx = boffset / in_c_stride;
    int out_offset = bidx * out_n_stride + cidx * out_c_stride;
    int out_index = indices_data[i];
    PADDLE_ASSERT(out_index < out_c_stride);
    output_data[out_offset + out_index] = input_data[i];
  }
S
sweetsky0901 已提交
44
}
S
sweetsky0901 已提交
45
template <typename T>
S
sweetsky0901 已提交
46 47 48 49 50
__global__ void KernelUnpool2dMaxGrad(
    const int nthreads, const T* input_data, const int* indices_data,
    const int input_height, const int input_width, const int channels,
    const T* output_data, const T* output_grad, const int output_height,
    const int output_width, T* input_grad) {
S
sweetsky0901 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
  int in_n_stride = input_height * input_width * channels;
  int in_c_stride = input_height * input_width;
  int out_n_stride = output_height * output_width * channels;
  int out_c_stride = output_height * output_width;
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  int offset = blockDim.x * gridDim.x;
  for (int i = index; i < nthreads; i += offset) {
    int bidx = i / in_n_stride;
    int boffset = i % in_n_stride;
    int cidx = boffset / in_c_stride;
    int out_offset = bidx * out_n_stride + cidx * out_c_stride;
    int out_index = indices_data[i];
    PADDLE_ASSERT(out_index < out_c_stride);
    input_grad[i] = output_grad[out_offset + out_index];
  }
S
sweetsky0901 已提交
66 67 68 69
}
/*
 * All tensors are in NCHW format.
 */
S
sweetsky0901 已提交
70 71
template <typename T>
class Unpool2dMaxFunctor<platform::GPUPlace, T> {
S
sweetsky0901 已提交
72
 public:
S
sweetsky0901 已提交
73
  void operator()(const platform::DeviceContext& context,
S
sweetsky0901 已提交
74 75
              const framework::Tensor& input,
              const framework::Tensor& indices, framework::Tensor* output) {
S
sweetsky0901 已提交
76 77 78 79 80 81 82
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
    const T* input_data = input.data<T>();
S
sweetsky0901 已提交
83
    const int* indices_data = indices.data<int>();
S
sweetsky0901 已提交
84
    T* output_data = output->mutable_data<T>(context.GetPlace());
85
    int threads = 1024;
S
sweetsky0901 已提交
86
    int grid = (input.numel() + threads - 1) / threads;
S
sweetsky0901 已提交
87 88 89 90
    KernelUnpool2dMax<
        T><<<grid, threads, 0,
            reinterpret_cast<const platform::CUDADeviceContext&>(context)
                .stream()>>>(input.numel(), input_data, indices_data,
S
sweetsky0901 已提交
91 92
                             input_height, input_width, output_channels,
                             output_data, output_height, output_width);
S
sweetsky0901 已提交
93 94 95 96 97
  }
};
/*
 * All tensors are in NCHW format.
 */
S
sweetsky0901 已提交
98 99
template <typename T>
class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
S
sweetsky0901 已提交
100
 public:
S
sweetsky0901 已提交
101 102
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input,
S
sweetsky0901 已提交
103
                  const framework::Tensor& indices,
S
sweetsky0901 已提交
104
                  const framework::Tensor& output,
S
sweetsky0901 已提交
105
                  const framework::Tensor& output_grad,
S
sweetsky0901 已提交
106
                  framework::Tensor* input_grad) {
S
sweetsky0901 已提交
107 108 109 110 111 112 113
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const T* input_data = input.data<T>();
S
sweetsky0901 已提交
114
    const int* indices_data = indices.data<int>();
S
sweetsky0901 已提交
115 116 117
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
118
    int threads = 1024;
S
sweetsky0901 已提交
119
    int grid = (input.numel() + threads - 1) / threads;
S
sweetsky0901 已提交
120 121 122 123
    KernelUnpool2dMaxGrad<
        T><<<grid, threads, 0,
            reinterpret_cast<const platform::CUDADeviceContext&>(context)
                .stream()>>>(input.numel(), input_data, indices_data,
S
sweetsky0901 已提交
124 125 126
                             input_height, input_width, output_channels,
                             output_data, output_grad_data, output_height,
                             output_width, input_grad_data);
S
sweetsky0901 已提交
127 128
  }
};
S
sweetsky0901 已提交
129 130 131 132
template class Unpool2dMaxGradFunctor<platform::GPUPlace, float>;
template class Unpool2dMaxGradFunctor<platform::GPUPlace, double>;
template class Unpool2dMaxFunctor<platform::GPUPlace, float>;
template class Unpool2dMaxFunctor<platform::GPUPlace, double>;
S
sweetsky0901 已提交
133 134 135
}  // namespace math
}  // namespace operators
}  // namespace paddle