io.py 46.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
17
import multiprocessing
P
peizhilin 已提交
18
import os
M
minqiyang 已提交
19
import six
Y
yuyang18 已提交
20
import threading
D
dzhwinter 已提交
21

Y
yuyang18 已提交
22
from ..data_feeder import DataFeeder
23 24
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
Y
yuyang18 已提交
25
from .. import core
Y
Refine  
Yu Yang 已提交
26
from ..executor import global_scope
Y
yuyang18 已提交
27
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
28
    default_startup_program, program_guard, Program, Variable
Y
yuyang18 已提交
29 30
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
Y
Yu Yang 已提交
31

Y
Yu Yang 已提交
32
__all__ = [
Y
yuyang 已提交
33
    'data', 'open_files', 'read_file', 'shuffle', 'batch', 'double_buffer',
Q
Qiao Longfei 已提交
34 35
    'random_data_generator', 'py_reader', 'create_py_reader_by_data',
    'Preprocessor', 'load'
Y
Yu Yang 已提交
36
]
Y
Yu Yang 已提交
37 38 39 40 41 42 43 44 45 46


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
47
    **Data Layer**
Y
Yu Yang 已提交
48

K
kavyasrinet 已提交
49
    This function takes in the input and based on whether data has
C
caoying03 已提交
50
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
51
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
52
    following operators in the graph.
Y
Yu Yang 已提交
53 54 55 56

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

57 58 59 60 61
    Notice that paddle would only use :code:`shape` to infer the shapes of 
    following variables in the network during compile-time. During run-time, 
    paddle would not check whether the shape of the feeded data matches the 
    :code:`shape` settings in this function. 

K
kavyasrinet 已提交
62 63
    Args:
       name(str): The name/alias of the function
S
sneaxiy 已提交
64 65 66 67
       shape(list): Tuple declaring the shape. If :code:`append_batch_size` is 
                    True and there is no -1 inside :code:`shape`, it should be 
                    considered as the shape of the each sample. Otherwise, it
                    should be considered as the shape of the batched data.  
X
Xin Pan 已提交
68 69
       append_batch_size(bool):
          1. If true, it prepends -1 to the shape.
70 71 72 73 74 75
            For example if shape=[1], the resulting shape is [-1, 1]. This will 
            be useful to set different batch size at run time.
          2. If shape contains -1, such as shape=[1, -1].
            append_batch_size will be enforced to be be False (ineffective)
            because PaddlePaddle cannot set more than 1 unknown number on the
            shape.
76
       dtype(np.dtype|VarType|str): The type of data : float32, float16, int etc
K
kavyasrinet 已提交
77 78 79 80 81 82 83 84 85 86
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

87
          import paddle.fluid as fluid
K
kavyasrinet 已提交
88
          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
89 90 91
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
M
minqiyang 已提交
92
    for i in six.moves.range(len(shape)):
Y
Yu Yang 已提交
93 94 95 96 97 98 99 100 101
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
102
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
103 104 105 106 107
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
108 109
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
110
    return data_var
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
136
    **ListenAndServ Layer**
T
typhoonzero 已提交
137

Y
yi.wu 已提交
138 139 140 141 142 143 144 145 146
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
147

Y
yi.wu 已提交
148 149 150
    Examples:
        .. code-block:: python

151
            import paddle.fluid as fluid
Y
yi.wu 已提交
152 153 154 155 156 157 158 159 160 161 162 163
            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
164 165
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
166 167
    """

Y
Yancey1989 已提交
168
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
169
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
170
        self.inputs = inputs
T
typhoonzero 已提交
171 172 173
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
174 175
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
176
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
190 191 192 193 194 195 196 197
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
198 199
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
200 201 202

        return params, grads

T
typhoonzero 已提交
203 204 205 206 207 208 209
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
210 211 212 213 214 215
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
216
            type='listen_and_serv',
Y
Yancey1989 已提交
217
            inputs={"X": self.inputs},
T
typhoonzero 已提交
218 219 220 221
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
Y
Yancey1989 已提交
222 223 224
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
225
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
226
                'grad_to_block_id': [""]
T
typhoonzero 已提交
227 228 229
            })


230
def Send(endpoints, send_vars, dummy_output=None, sync=True):
T
typhoonzero 已提交
231
    """
Y
yi.wu 已提交
232 233
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
234 235

    Args:
Y
yi.wu 已提交
236
        endpoints (str): comma seperated IP:PORT pairs in the order
T
typhoonzero 已提交
237
                   of send_vars to send
Y
yi.wu 已提交
238 239
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
240 241 242 243

    """
    assert (type(send_vars) == list)

244 245 246 247 248 249 250
    if dummy_output is None:
        dummy_output = []
    elif isinstance(dummy_output, Variable):
        dummy_output = [dummy_output]

    assert (type(dummy_output) == list)

T
typhoonzero 已提交
251
    epmap = endpoints.split(",")
T
typhoonzero 已提交
252
    endpoints = list(set(epmap))
T
typhoonzero 已提交
253 254

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
255
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
256

T
typhoonzero 已提交
257 258 259
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
260
        outputs={"Out": dummy_output},
Y
Yancey1989 已提交
261 262 263 264 265
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })
Y
yi.wu 已提交
266
    if sync:
W
Wu Yi 已提交
267 268 269 270 271
        helper.append_op(
            type="send_barrier",
            inputs={"X": dummy_output},
            outputs={"Out": []},
            attrs={"endpoints": endpoints})
272 273


274
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
275
    """
Y
yi.wu 已提交
276
    Receive variables from server side
277 278

    Args:
Y
yi.wu 已提交
279
        endpoints (str): comma seperated IP:PORT pairs in the order
280
                   of send_vars to send
Y
yi.wu 已提交
281 282
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
283

Y
yi.wu 已提交
284 285
    Returns:
        list: list of received variables
286 287 288
    """
    assert (type(get_vars) == list)

289 290 291 292 293 294 295
    if dummy_input is None:
        dummy_input = []
    elif isinstance(dummy_input, Variable):
        dummy_input = [dummy_input]

    assert (type(dummy_input) == list)

296 297 298 299 300 301
    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
302
        inputs={"X": dummy_input},
303 304 305
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
yi.wu 已提交
306
    if sync:
W
Wu Yi 已提交
307 308 309 310
        helper.append_op(
            type="fetch_barrier",
            outputs={"Out": get_vars},
            attrs={"endpoints": endpoints})
Y
yi.wu 已提交
311
    return get_vars
Y
Yu Yang 已提交
312 313


Y
Refine  
Yu Yang 已提交
314 315 316 317 318 319 320 321 322 323
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
324 325
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
326 327 328
    return reader


Y
Yu Yang 已提交
329 330 331 332
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
S
sneaxiy 已提交
333
    new_var.desc.set_lod_levels(var.desc.lod_levels())
Y
Yu Yang 已提交
334
    new_var.persistable = True
F
fengjiayi 已提交
335 336 337 338
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
355
    new_op = block.append_op(
F
fengjiayi 已提交
356 357 358
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
359
        attrs=op.all_attrs())
F
fengjiayi 已提交
360
    return new_op
Y
Yu Yang 已提交
361 362


W
wopeizl 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
@templatedoc(op_type='create_recordio_file_reader')
def open_recordio_file(filename,
                       shapes,
                       lod_levels,
                       dtypes,
                       pass_num=1,
                       for_parallel=True):
    """
    ${comment}

    Args:
       filename(${filename_type}): ${filename_comment}.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(${lod_levels_type}): ${lod_levels_comment}.
       dtypes(list): List of strs which declaring data type.
       pass_num(int): Number of passes to run.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       ${out_comment}.

    Examples:

        >>> import paddle.fluid as fluid
        >>> reader = fluid.layers.io.open_recordio_file(
        >>>                               filename='./data.recordio',
390
        >>>                               shapes=[(3,224,224), (1,)],
W
wopeizl 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
        >>>                               lod_levels=[0, 0],
        >>>                               dtypes=['float32', 'int64'])
        >>> # Via the reader, we can use 'read_file' layer to get data:
        >>> image, label = fluid.layers.io.read_file(reader)
    """
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })
Y
Yu Yang 已提交
417

W
wopeizl 已提交
418 419 420 421
    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
F
fengjiayi 已提交
422

W
wopeizl 已提交
423 424
    if pass_num > 1:
        main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)
F
fengjiayi 已提交
425

W
wopeizl 已提交
426
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
427 428


F
fengjiayi 已提交
429 430 431 432 433
def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
    """
    Create a uniform random data generator

    This layer returns a Reader Variable.
434 435 436
    Instead of opening a file and reading data from it, this
    Reader Variable generates float uniform random data by itself.
    It can be used as a dummy reader to test a network without
F
fengjiayi 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
    opening a real file.

    Args:
       low(float): The lower bound of data's uniform distribution.
       high(float): The upper bound of data's uniform distribution.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable from which we can get random data.

    Examples:

452
        .. code-block:: python
F
fengjiayi 已提交
453

454
            import paddle.fluid as fluid
455 456 457 458 459 460 461
            reader = fluid.layers.random_data_generator(
                                             low=0.0,
                                             high=1.0,
                                             shapes=[[3,224,224], [1]],
                                             lod_levels=[0, 0])
            # Via the reader, we can use 'read_file' layer to get data:
            image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
    """
    dtypes = [core.VarDesc.VarType.FP32] * len(shapes)
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('random_data_generator')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_random_data_generator',
        outputs={'Out': [startup_var]},
        attrs={
            'low': low,
            'high': high,
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    return monkey_patch_reader_methods(main_prog_var)


Q
Qiao Longfei 已提交
494 495 496 497 498 499
def _py_reader(capacity,
               shapes,
               dtypes,
               lod_levels=None,
               name=None,
               use_double_buffer=True,
S
sneaxiy 已提交
500
               feed_list=None):
501

Q
Qiao Longfei 已提交
502 503 504 505 506 507 508 509 510 511
    if feed_list is not None:
        if not isinstance(feed_list, list):
            raise TypeError("feed_list should be a list of Variable"
                            " instead of " + str(type(feed_list)))
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []

Q
Qiao Longfei 已提交
512 513 514 515 516 517
        for feed_data in feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
Q
Qiao Longfei 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
    else:
        dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
        shape_concat = []
        ranks = []

        for shape in shapes:
            shape_concat.extend(shape)
            ranks.append(len(shape))

        if lod_levels is None:
            lod_levels = [0] * len(shapes)

    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
        double_buffer_name = unique_name('double_buffer')
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
        double_buffer_name = "_".join([name, "double_buffer"])

    var = global_scope().var(queue_name)
S
sneaxiy 已提交
540
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity)
Q
Qiao Longfei 已提交
541 542 543 544

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=reader_name)
    startup_blk.append_op(
S
add doc  
sneaxiy 已提交
545
        type='create_py_reader',
Q
Qiao Longfei 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
        inputs={'blocking_queue': [queue_name]},
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
    reader.exited = False

    def start_provide_thread(func):
        def __provider_thread__():
S
sneaxiy 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
            try:
                for tensors in func():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if reader.exited:
                        break
                    feed_queue.push(array)
                    if reader.exited:
                        break
                feed_queue.close()
            except Exception as ex:
                feed_queue.close()
                raise ex
Q
Qiao Longfei 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

        reader.thread = threading.Thread(target=__provider_thread__)
        reader.thread.daemon = True
        reader.thread.start()

    def __set_tensor_provider__(func):
        reader.tensor_provider = func

    def __set_paddle_reader__(paddle_reader):
        with program_guard(Program(), Program()):
            actual_feed_list = feed_list
            if actual_feed_list is None:
                actual_feed_list = []
                counter = 0
                for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                    name = str(counter)
                    actual_feed_list.append(
                        data(
                            name=name,
                            dtype=dtype,
                            shape=shape,
                            lod_level=lod_level))
                    counter += 1

Q
Qiao Longfei 已提交
621
            data_names = [feed_data.name for feed_data in actual_feed_list]
Q
Qiao Longfei 已提交
622 623 624 625 626 627 628
            feeder = DataFeeder(
                feed_list=actual_feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(
                paddle_reader, multi_devices=False)

        def __tensor_provider__():
            for slots in paddle_reader():
Q
Qiao Longfei 已提交
629
                yield [slots[data_name] for data_name in data_names]
Q
Qiao Longfei 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
            reader.exited = True
            reader.thread.join()
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
S
sneaxiy 已提交
646 647 648

    reader.decorate_batch_generator = __set_tensor_provider__
    reader.decorate_sample_list_generator = __set_paddle_reader__
Q
Qiao Longfei 已提交
649 650 651 652 653
    reader.start = __start__

    return reader


Y
yuyang18 已提交
654 655 656 657 658
def py_reader(capacity,
              shapes,
              dtypes,
              lod_levels=None,
              name=None,
S
sneaxiy 已提交
659
              use_double_buffer=True):
S
sneaxiy 已提交
660
    """
661
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
662

663
    This layer returns a Reader Variable.
664 665
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
666 667 668 669 670
    source. More details :ref:`user_guide_use_py_reader_en` .  When
    :code:`Executor::Run()` is invoked in C++ side, the data from the generator
    would be read automatically. Unlike :code:`DataFeeder.feed()`, the data
    reading process and :code:`Executor::Run()` process can run in parallel
    using :code:`py_reader`. The :code:`start()` method of the Reader should be
671 672 673
    called when each pass begins, while the :code:`reset()` method should be
    called when the pass ends and :code:`fluid.core.EOFException` raises.
    Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
S
sneaxiy 已提交
674 675

    Args:
676
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
Y
yuyang18 已提交
677 678 679 680 681
       shapes(list|tuple): List of tuples which declaring data shapes.
       dtypes(list|tuple): List of strs which declaring data type.
       lod_levels(list|tuple): List of ints which declaring data lod_level.
       name(basestring): The prefix Python queue name and Reader name. None will
            be generated automatically.
682
       use_double_buffer(bool): Whether use double buffer or not.
S
sneaxiy 已提交
683 684

    Returns:
685
       Variable: A Reader from which we can get feeding data.
S
sneaxiy 已提交
686 687

    Examples:
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
       1. The basic usage of :code:`py_reader` is as follows:
       
       .. code-block:: python
    
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(image, label):
             # user defined network, here a softmax regresssion example
             predict = fluid.layers.fc(input=image, size=10, act='softmax')
             return fluid.layers.cross_entropy(input=predict, label=label)

         reader = fluid.layers.py_reader(capacity=64,
                                         shapes=[(-1, 1, 28, 28), (-1, 1)],
                                         dtypes=['float32', 'int64'])
         reader.decorate_paddle_reader(
             paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                   buf_size=1000))

         img, label = fluid.layers.read_file(reader)
         loss = network(img, label)

         fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
         exe = fluid.ParallelExecutor(use_cuda=True)
         for epoch_id in range(10):
             reader.start()
H
Huihuang Zheng 已提交
715 716 717 718 719
             try:
                 while True:
                     exe.run(fetch_list=[loss.name])
             except fluid.core.EOFException:
                 reader.reset()
720 721 722 723 724 725 726 727

         fluid.io.save_inference_model(dirname='./model',
                                       feeded_var_names=[img.name, label.name],
                                       target_vars=[loss],
                                       executor=fluid.Executor(fluid.CUDAPlace(0)))

       2. When training and testing are both performed, two different
       :code:`py_reader` should be created with different names, e.g.:
S
sneaxiy 已提交
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
       .. code-block:: python
    
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(reader):
             img, label = fluid.layers.read_file(reader)
             # User defined network. Here a simple regression as example
             predict = fluid.layers.fc(input=img, size=10, act='softmax')
             loss = fluid.layers.cross_entropy(input=predict, label=label)
             return fluid.layers.mean(loss)

         # Create train_main_prog and train_startup_prog
         train_main_prog = fluid.Program()
         train_startup_prog = fluid.Program()
         with fluid.program_guard(train_main_prog, train_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with test program
             with fluid.unique_name.guard():
                 train_reader = fluid.layers.py_reader(capacity=64,
                                                       shapes=[(-1, 1, 28, 28),
                                                               (-1, 1)],
                                                       dtypes=['float32', 'int64'],
                                                       name='train_reader')
                 train_reader.decorate_paddle_reader(
H
Huihuang Zheng 已提交
754 755
                     paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                           buf_size=500))
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
                 train_loss = network(train_reader)  # some network definition
                 adam = fluid.optimizer.Adam(learning_rate=0.01)
                 adam.minimize(train_loss)

         # Create test_main_prog and test_startup_prog
         test_main_prog = fluid.Program()
         test_startup_prog = fluid.Program()
         with fluid.program_guard(test_main_prog, test_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with train program
             with fluid.unique_name.guard():
                 test_reader = fluid.layers.py_reader(capacity=32,
                                                      shapes=[(-1, 1, 28, 28), (-1, 1)],
                                                      dtypes=['float32', 'int64'],
                                                      name='test_reader')
                 test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
                 test_loss = network(test_reader)

         fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
         fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)

         train_exe = fluid.ParallelExecutor(use_cuda=True,
                                            loss_name=train_loss.name,
                                            main_program=train_main_prog)
         test_exe = fluid.ParallelExecutor(use_cuda=True,
                                           loss_name=test_loss.name,
                                           main_program=test_main_prog)
         for epoch_id in range(10):
             train_reader.start()
             try:
                 while True:
                    train_exe.run(fetch_list=[train_loss.name])
             except fluid.core.EOFException:
                 train_reader.reset()

         test_reader.start()
         try:
             while True:
                 test_exe.run(fetch_list=[test_loss.name])
         except fluid.core.EOFException:
             test_reader.reset()
S
sneaxiy 已提交
796
    """
Q
Qiao Longfei 已提交
797 798 799 800 801 802
    return _py_reader(
        capacity=capacity,
        shapes=shapes,
        dtypes=dtypes,
        lod_levels=lod_levels,
        name=name,
S
sneaxiy 已提交
803
        use_double_buffer=use_double_buffer)
Q
Qiao Longfei 已提交
804 805


Q
Qiao Longfei 已提交
806 807 808 809 810 811
def create_py_reader_by_data(capacity,
                             feed_list,
                             name=None,
                             use_double_buffer=True):
    """
    Create a Python reader for data feeding in Python
Q
Qiao Longfei 已提交
812

Q
Qiao Longfei 已提交
813
    This layer returns a Reader Variable.
Q
Qiao Longfei 已提交
814

Q
Qiao Longfei 已提交
815 816
    Works much like py_reader except that it's input is feed_list
    instead of shapes, dtypes and lod_levels
Q
Qiao Longfei 已提交
817

Q
Qiao Longfei 已提交
818 819 820 821 822 823
    Args:
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
       feed_list(list(Variable)): The data feed list.
       name(basestring): The prefix Python queue name and Reader name. None will
            be generated automatically.
       use_double_buffer(bool): Whether use double buffer or not.
Q
Qiao Longfei 已提交
824

Q
Qiao Longfei 已提交
825 826
    Returns:
       Variable: A Reader from which we can get feeding data.
Q
Qiao Longfei 已提交
827

Q
Qiao Longfei 已提交
828
    Examples:
829
       .. code-block:: python
Q
Qiao Longfei 已提交
830

831 832 833
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist
834
         import paddle.fluid.compiler as compiler
835 836 837 838 839 840 841

         def network(img, label):
             # User defined network. Here a simple regression as example
             predict = fluid.layers.fc(input=img, size=10, act='softmax')
             loss = fluid.layers.cross_entropy(input=predict, label=label)
             return fluid.layers.mean(loss)

842 843 844
         MEMORY_OPT = False
         USE_CUDA = False

845 846 847 848 849 850 851 852 853 854 855
         image = fluid.layers.data(name='image', shape=[1, 28, 28], dtype='float32')
         label = fluid.layers.data(name='label', shape=[1], dtype='int64')
         reader = fluid.layers.create_py_reader_by_data(capacity=64,
                                                        feed_list=[image, label])
         reader.decorate_paddle_reader(
             paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                   buf_size=500))

         img, label = fluid.layers.read_file(reader)
         loss = network(img, label)  # some network definition

856 857 858
         place = fluid.CUDAPlace(0) if USE_CUDA else fluid.CPUPlace()
         exe = fluid.Executor(place)
         exe.run(fluid.default_startup_program())
859

860 861 862 863 864 865 866 867 868
         build_strategy = fluid.BuildStrategy()
         build_strategy.memory_optimize = True if MEMORY_OPT else False
         compiled_prog = compiler.CompiledProgram(
             fluid.default_main_program()).with_data_parallel(
                 loss_name=loss.name,
                 build_strategy=build_strategy,
                 exec_strategy=exec_strategy)

         for epoch_id in range(2):
869 870 871
             reader.start()
             try:
                 while True:
872
                     exe.run(compiled_prog, fetch_list=[loss.name])
873 874
             except fluid.core.EOFException:
                 reader.reset()
Q
Qiao Longfei 已提交
875 876 877 878 879 880 881 882 883
    """
    return _py_reader(
        capacity=capacity,
        shapes=None,
        dtypes=None,
        lod_levels=None,
        name=name,
        use_double_buffer=use_double_buffer,
        feed_list=feed_list)
S
sneaxiy 已提交
884 885


886 887 888 889
def open_files(filenames,
               shapes,
               lod_levels,
               dtypes,
Y
yuyang18 已提交
890
               thread_num=None,
F
fengjiayi 已提交
891 892
               buffer_size=None,
               pass_num=1,
Y
yuyang18 已提交
893
               is_test=None):
F
fengjiayi 已提交
894 895 896
    """
    Open files

897 898 899
    This layer takes a list of files to read from and returns a Reader Variable.
    Via the Reader Variable, we can get data from given files. All files must
    have name suffixs to indicate their formats, e.g., '*.recordio'.
F
fengjiayi 已提交
900 901 902 903 904 905

    Args:
       filenames(list): The list of file names.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
Y
yuyang18 已提交
906 907 908
       thread_num(None): The number of thread to read files.
            Default: min(len(filenames), cpu_number).
       buffer_size(None): The buffer size of reader. Default: 3 * thread_num
F
fengjiayi 已提交
909
       pass_num(int): Number of passes to run.
Y
yuyang18 已提交
910 911 912 913
       is_test(bool|None): Whether `open_files` used for testing or not. If it
            is used for testing, the order of data generated is same as the file
            order. Otherwise, it is not guaranteed the order of data is same
            between every epoch. [Default: False].
F
fengjiayi 已提交
914 915 916 917 918 919 920

    Returns:
       Variable: A Reader Variable via which we can get file data.

    Examples:
       .. code-block:: python

921
         import paddle.fluid as fluid
F
fengjiayi 已提交
922
         reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
F
fengjiayi 已提交
923
                                                     './data2.recordio'],
924
                                             shapes=[(3,224,224), (1,)],
F
fengjiayi 已提交
925
                                             lod_levels=[0, 0],
Y
yuyang18 已提交
926
                                             dtypes=['float32', 'int64'])
F
fengjiayi 已提交
927 928

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
929
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
930
    """
Y
yuyang18 已提交
931 932 933 934 935 936 937 938 939
    if thread_num is None:
        thread_num = min(len(filenames), multiprocessing.cpu_count())
    else:
        thread_num = int(thread_num)

    if buffer_size is None:
        buffer_size = 3 * thread_num
    else:
        buffer_size = int(buffer_size)
Y
yuyang18 已提交
940

M
minqiyang 已提交
941
    if isinstance(filenames, six.string_types):
F
fengjiayi 已提交
942
        filenames = [filenames]
F
fengjiayi 已提交
943 944 945 946 947 948 949 950
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

F
fengjiayi 已提交
951
    multi_file_reader_name = unique_name('multi_file_reader')
F
fengjiayi 已提交
952
    startup_blk = default_startup_program().current_block()
F
fengjiayi 已提交
953
    startup_reader = startup_blk.create_var(name=multi_file_reader_name)
Y
yuyang18 已提交
954 955 956 957
    attrs = {
        'shape_concat': shape_concat,
        'lod_levels': lod_levels,
        'ranks': ranks,
Y
yuyang18 已提交
958 959 960
        'file_names': filenames,
        'thread_num': thread_num,
        'buffer_size': buffer_size
Y
yuyang18 已提交
961 962 963
    }
    if is_test is not None:
        attrs['is_test'] = is_test
F
fengjiayi 已提交
964
    startup_blk.append_op(
Y
yuyang18 已提交
965
        type='open_files', outputs={'Out': [startup_reader]}, attrs=attrs)
F
fengjiayi 已提交
966

F
fengjiayi 已提交
967 968 969 970 971 972 973
    startup_reader.desc.set_dtypes(dtypes)
    startup_reader.persistable = True
    main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
                                         startup_reader)
    if pass_num > 1:
        main_prog_reader = multi_pass(
            reader=main_prog_reader, pass_num=pass_num)
F
fengjiayi 已提交
974

F
fengjiayi 已提交
975 976 977
    return monkey_patch_reader_methods(main_prog_reader)


J
JiayiFeng 已提交
978
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
979 980 981
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
982
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
983 984 985 986 987
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
988 989 990 991
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
992 993


994 995
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
996 997 998 999 1000 1001 1002 1003 1004 1005
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


F
fengjiayi 已提交
1006
def shuffle(reader, buffer_size):
1007
    """
T
Tink_Y 已提交
1008 1009 1010 1011 1012 1013
    Creates a data reader whose data output is shuffled.
    Output from the iterator that created by original reader will be
    buffered into shuffle buffer, and then shuffled. The size of shuffle buffer
    is determined by argument buf_size.

    Args:
H
haowang101779990 已提交
1014 1015 1016 1017 1018
        reader(callable): the original reader whose output will be shuffled.
        buf_size(int): shuffle buffer size.

    Returns:
        callable: the new reader whose output is shuffled.
1019 1020 1021 1022

    Examples:
        .. code-block:: python

1023
            import paddle.fluid as fluid
1024 1025 1026 1027 1028 1029 1030 1031 1032
            raw_reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
                                                           './data2.recordio'],
                                                    shapes=[(3,224,224), (1,)],
                                                    lod_levels=[0, 0],
                                                    dtypes=['float32', 'int64'],
                                                    thread_num=2,
                                                    buffer_size=2)
            batch_reader = fluid.layers.batch(reader=raw_reader, batch_size=5)
            shuffle_reader = fluid.layers.shuffle(reader=batch_reader, buffer_size=5000)
1033
    """
1034 1035
    return __create_unshared_decorated_reader__(
        'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
Y
Yu Yang 已提交
1036 1037


J
JiayiFeng 已提交
1038
def batch(reader, batch_size):
F
fengjiayi 已提交
1039
    """
1040 1041 1042
    This layer is a reader decorator. It takes a reader and adds
    'batching' decoration on it. When reading with the result
    decorated reader, output data will be automatically organized
F
fengjiayi 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    to the form of batches.

    Args:
        reader(Variable): The reader to be decorated with 'batching'.
        batch_size(int): The batch size.

    Returns:
        Variable: The reader which has been decorated with 'batching'.

    Examples:
        .. code-block:: python

1055
            import paddle.fluid as fluid
F
fengjiayi 已提交
1056 1057
            raw_reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
                                                           './data2.recordio'],
1058
                                                    shapes=[(3,224,224), (1,)],
F
fengjiayi 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067
                                                    lod_levels=[0, 0],
                                                    dtypes=['float32', 'int64'],
                                                    thread_num=2,
                                                    buffer_size=2)
            batch_reader = fluid.layers.batch(reader=raw_reader, batch_size=5)

            # If we read data with the raw_reader:
            #     data = fluid.layers.read_file(raw_reader)
            # We can only get data instance by instance.
1068
            #
F
fengjiayi 已提交
1069 1070
            # However, if we read data with the batch_reader:
            #     data = fluid.layers.read_file(batch_reader)
1071 1072
            # Each 5 adjacent instances will be automatically combined together
            # to become a batch. So what we get('data') is a batch data instead
F
fengjiayi 已提交
1073 1074
            # of an instance.
    """
J
JiayiFeng 已提交
1075 1076 1077 1078
    return __create_unshared_decorated_reader__(
        'create_batch_reader', reader, {'batch_size': int(batch_size)})


1079
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
    """
    Wrap a double buffer reader. The data will copy to target place with a
    double buffer queue. If the target place is None, the place that executor
    perform on will be used.

    Args:
        reader(Variable): the reader variable need to be wrapped.
        place(Place): the place of target data. Default is the sample place of
            executor perform.

        name(str): Variable name. None if the user does not care.

    Returns:
        wrapped reader with double buffer.

    Examples:

F
flame 已提交
1097 1098
        >>> import paddle.fluid as fluid
        >>> reader = fluid.layers.open_files(filenames=['mnist.recordio'],
Y
yuyang18 已提交
1099
        >>>                                  shapes=[[-1, 784], [-1, 1]],
F
flame 已提交
1100
        >>>                                  lod_levels=[0, 0],
Y
yuyang18 已提交
1101 1102 1103 1104
        >>>                                  dtypes=['float32', 'int64'])
        >>> reader = fluid.layers.double_buffer(reader)
        >>> img, label = fluid.layers.read_file(reader)
    """
Y
Yu Yang 已提交
1105 1106 1107
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
1108 1109
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
1110 1111


F
fengjiayi 已提交
1112
def multi_pass(reader, pass_num):
1113 1114
    return __create_shared_decorated_reader__(
        'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
F
fengjiayi 已提交
1115 1116


F
fengjiayi 已提交
1117
def read_file(reader):
F
fengjiayi 已提交
1118
    """
F
fengjiayi 已提交
1119
    Execute the given reader and get data via it.
F
fengjiayi 已提交
1120

1121 1122
    A reader is also a Variable. It can be a raw reader generated by
    `fluid.layers.open_files()` or a decorated one generated by
F
fengjiayi 已提交
1123 1124 1125 1126
    `fluid.layers.double_buffer()` and so on.

    Args:

F
fengjiayi 已提交
1127
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
1128 1129

    Returns:
F
fengjiayi 已提交
1130
        Tuple[Variable]: Data read via the given reader.
F
fengjiayi 已提交
1131 1132 1133

    Examples:
        .. code-block:: python
1134 1135
          
           import paddle.fluid as fluid
F
fengjiayi 已提交
1136 1137 1138 1139 1140
           data_file = fluid.layers.open_files(
                filenames=['mnist.recordio'],
                shapes=[(-1, 748), (-1, 1)],
                lod_levels=[0, 0],
                dtypes=["float32", "int64"])
1141
           data_file = fluid.layers.double_buffer(
F
fengjiayi 已提交
1142
                fluid.layers.batch(data_file, batch_size=64))
1143
           input, label = fluid.layers.read_file(data_file)
F
fengjiayi 已提交
1144
    """
Y
Yu Yang 已提交
1145 1146
    helper = LayerHelper('read_file')
    out = [
X
Xin Pan 已提交
1147
        helper.create_variable_for_type_inference(
Y
Yu Yang 已提交
1148
            stop_gradient=True, dtype='float32')
F
fengjiayi 已提交
1149
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
1150 1151
    ]
    helper.append_op(
F
fengjiayi 已提交
1152
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
Y
Yu Yang 已提交
1153 1154 1155 1156
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
1157 1158 1159


class Preprocessor(object):
X
Xin Pan 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168
    """
    A block for data pre-processing in reader.

    Args:
        reader (Variable): A reader variable.
        name (str, default None): The name of the reader.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1169

H
Huihuang Zheng 已提交
1170 1171
           import paddle.fluid as fluid

1172 1173 1174 1175 1176 1177
           reader = fluid.layers.io.open_files(
               filenames=['./data1.recordio', './data2.recordio'],
               shapes=[(3, 224, 224), (1, )],
               lod_levels=[0, 0],
               dtypes=['float32', 'int64']) 

X
Xin Pan 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
            preprocessor = fluid.layers.io.Preprocessor(reader=reader)
            with preprocessor.block():
                img, lbl = preprocessor.inputs()
                img_out = img / 2
                lbl_out = lbl + 1
                preprocessor.outputs(img_out, lbl_out)

            data_file = fluid.layers.io.double_buffer(preprocessor())

    """
F
fengjiayi 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    BEFORE_SUB_BLOCK = 0
    IN_SUB_BLOCK = 1
    AFTER_SUB_BLOCK = 2

    def __init__(self, reader, name=None):
        self.underlying_reader = reader
        new_reader_name = name if name is not None else unique_name(
            "create_custom_reader")
        self.main_prog = default_main_program()
        self.reader = self.main_prog.current_block().create_var(
            name=new_reader_name)
        self.sub_block = None
        self.source_var_names = None
        self.sink_var_names = None
        self.status = Preprocessor.BEFORE_SUB_BLOCK

X
Xin Pan 已提交
1204
    def _is_completed(self):
F
fengjiayi 已提交
1205 1206
        return self.sub_block and self.source_var_names and self.sink_var_names

S
rename  
sneaxiy 已提交
1207
    @signature_safe_contextmanager
F
fengjiayi 已提交
1208 1209
    def block(self):
        self.status = Preprocessor.IN_SUB_BLOCK
W
Wu Yi 已提交
1210
        self.sub_block = self.main_prog._create_block()
F
fengjiayi 已提交
1211
        yield
W
Wu Yi 已提交
1212
        self.main_prog._rollback()
F
fengjiayi 已提交
1213
        self.status = Preprocessor.AFTER_SUB_BLOCK
X
Xin Pan 已提交
1214
        if not self._is_completed():
F
fengjiayi 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
            raise RuntimeError(
                "The definition of preprocessor is incompleted! "
                "Please make sure that you have set input and output "
                "variables by invoking 'inputs' and 'outputs' in "
                "Preprocessor's sub-block.")

    def inputs(self):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.inputs() can only be invoked inside the sub-block."
            )

        source_shapes = self.underlying_reader.desc.shapes()
        source_dtypes = self.underlying_reader.desc.dtypes()
        source_lod_levels = self.underlying_reader.desc.lod_levels()
F
fengjiayi 已提交
1230 1231
        self.source_var_names = [
            unique_name("preprocessor_source")
M
minqiyang 已提交
1232
            for _ in six.moves.range(len(source_shapes))
F
fengjiayi 已提交
1233
        ]
F
fengjiayi 已提交
1234
        source_vars = []
F
fengjiayi 已提交
1235 1236 1237
        for var_name, shape, dtype, lod_level in zip(
                self.source_var_names, source_shapes, source_dtypes,
                source_lod_levels):
F
fengjiayi 已提交
1238
            source_vars.append(self.main_prog.current_block().create_var(
F
fengjiayi 已提交
1239
                name=var_name, shape=shape, dtype=dtype, lod_level=lod_level))
F
fengjiayi 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
        return source_vars

    def outputs(self, *outs):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.outputs() can only be invoked inside the sub-block."
            )
        self.sink_var_names = [var.name for var in outs]

    def __call__(self, *args, **kwargs):
        if self.status != Preprocessor.AFTER_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor output can only be retrieved after rnn block.")

        self.main_prog.current_block().append_op(
            type="create_custom_reader",
            inputs={'UnderlyingReader': self.underlying_reader},
            outputs={'Out': [self.reader]},
            attrs={
                "sub_block": self.sub_block,
                "source_var_names": self.source_var_names,
                "sink_var_names": self.sink_var_names
            })
        return monkey_patch_reader_methods(self.reader)
Y
yuyang18 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289


@templatedoc()
def load(out, file_path, load_as_fp16=None):
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> tmp_tensor = fluid.layers.create_tensor(dtype='float32')
    >>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")

    Args:
        out(${out_type}): ${out_comment}.

        file_path(${file_path_type}): ${file_path_comment}.

        load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}.

    Returns:
        None
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
    helper.append_op(type="load", inputs={}, output={"Out": out}, args=attrs)