conv_bn_fuse_pass.cc 25.2 KB
Newer Older
S
Sylwester Fraczek 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/conv_bn_fuse_pass.h"
W
wanghuancoder 已提交
16

S
Sylwester Fraczek 已提交
17
#include <string>
W
wanghuancoder 已提交
18

19
#include "paddle/fluid/framework/convert_utils.h"
P
Pei Yang 已提交
20
#include "paddle/fluid/framework/op_version_registry.h"
S
Sylwester Fraczek 已提交
21 22
#include "paddle/fluid/platform/enforce.h"

23 24 25 26
namespace pten {
class DenseTensor;
}  // namespace pten

W
wanghuancoder 已提交
27 28 29 30 31 32
namespace paddle {
namespace framework {
class Scope;
}  // namespace framework
}  // namespace paddle

S
Sylwester Fraczek 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
namespace paddle {
namespace framework {
namespace ir {

#define GET_CONV_BN_NODES(pattern_name)                                      \
  /* OPERATORS */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name);                       \
  GET_IR_NODE_FROM_SUBGRAPH(batch_norm, batch_norm, pattern_name);           \
  /* CONV inputs */                                                          \
  GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name);         \
  /* CONV outputs */                                                         \
  GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name);               \
  /* BN inputs */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(bn_scale, bn_scale, pattern_name);               \
  GET_IR_NODE_FROM_SUBGRAPH(bn_bias, bn_bias, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean, bn_mean, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance, bn_variance, pattern_name);         \
  /* BN outputs */                                                           \
  GET_IR_NODE_FROM_SUBGRAPH(bn_out, bn_out, pattern_name); /* Out */         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean_out, bn_mean_out, pattern_name);         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance_out, bn_variance_out, pattern_name); \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name);     \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)

void recompute_bias_and_weights(const Scope* scope,
                                ir::Node* conv_weight,            //
                                const ir::Node& bn_scale,         //
                                const LoDTensor& bn_bias_tensor,  //
                                const ir::Node& bn_mean,          //
                                const ir::Node& bn_variance,      //
63
                                LoDTensor* eltwise_y_in_tensor,   //
64
                                float epsilon, const std::string& conv_type) {
65 66 67 68 69 70 71
  using EigenVectorArrayMap =
      Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
  using ConstEigenVectorArrayMap =
      Eigen::Map<const Eigen::Array<float, Eigen::Dynamic, 1>>;
  using EigenMatrixArrayMap = Eigen::Map<
      Eigen::Array<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;

S
Sylwester Fraczek 已提交
72
  // Re-compute bias of conv2d from BN
73 74 75 76 77 78
  PADDLE_ENFORCE_EQ(
      eltwise_y_in_tensor->dims(), bn_bias_tensor.dims(),
      platform::errors::InvalidArgument("Tensor elementwise y(%d) and batch "
                                        "norm bias(%d) must have same dims.",
                                        eltwise_y_in_tensor->dims().size(),
                                        bn_bias_tensor.dims().size()));
S
Sylwester Fraczek 已提交
79 80 81 82 83 84

  auto* scale_tensor = scope->FindVar(bn_scale.Name())->GetMutable<LoDTensor>();
  auto* variance_tensor =
      scope->FindVar(bn_variance.Name())->GetMutable<LoDTensor>();
  auto* mean_tensor = scope->FindVar(bn_mean.Name())->GetMutable<LoDTensor>();

85 86 87 88 89 90 91 92 93
  ConstEigenVectorArrayMap scale_array(scale_tensor->data<float>(),
                                       scale_tensor->numel(), 1);
  EigenVectorArrayMap variance_array(
      variance_tensor->mutable_data<float>(platform::CPUPlace()),
      variance_tensor->numel(), 1);
  ConstEigenVectorArrayMap mean_array(mean_tensor->data<float>(),
                                      mean_tensor->numel(), 1);
  ConstEigenVectorArrayMap bn_bias_array(bn_bias_tensor.data<float>(),
                                         bn_bias_tensor.numel(), 1);
S
Sylwester Fraczek 已提交
94

95 96 97 98
  // variance will not be used anymore, so make it std_array and then tmp_array
  variance_array += epsilon;
  variance_array = variance_array.sqrt();
  variance_array = scale_array / variance_array;
99
  for (int i = 0; i < variance_tensor->numel(); i++) {
100 101 102 103 104 105
    PADDLE_ENFORCE_EQ(std::isfinite(variance_array[i]), true,
                      platform::errors::InvalidArgument(
                          "The inverse of Fused batch norm variance "
                          "should be finite. Found nonfinite values! "
                          "Please check %s ",
                          bn_variance.Name()));
106
  }
107 108 109
  EigenVectorArrayMap eltwise_y_in_array(
      eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
      eltwise_y_in_tensor->numel(), 1);
110

111 112
  eltwise_y_in_array =
      ((eltwise_y_in_array - mean_array) * variance_array) + bn_bias_array;
113
  for (int i = 0; i < eltwise_y_in_tensor->numel(); i++) {
114 115 116 117 118 119
    PADDLE_ENFORCE_EQ(std::isfinite(eltwise_y_in_array[i]), true,
                      platform::errors::InvalidArgument(
                          "Fused batch norm bias should be "
                          "finite. Found nonfinite values! "
                          "Please check %s and related variables.",
                          bn_variance.Name()));
120
  }
S
Sylwester Fraczek 已提交
121 122

  // Re-compute weight of conv2d from BN
123 124
  auto* weights = scope->FindVar(conv_weight->Name())->GetMutable<LoDTensor>();
  auto weights_shape = weights->dims();
125 126 127 128 129 130 131 132 133 134 135 136 137
  auto weights_data = weights->mutable_data<float>(platform::CPUPlace());

  // ConvTranspose weights are in IOHW format
  if (conv_type == "conv2d_transpose") {
    int kernel_size = weights_shape[2] * weights_shape[3];
    for (int i = 0; i < weights->numel();) {
      for (int j = 0; j < weights_shape[1]; ++j) {
        for (int k = 0; k < kernel_size; ++k, ++i) {
          weights_data[i] *= variance_array[j];
        }
      }
    }
  } else {
138
    auto weights_shape_2d = pten::flatten_to_2d(weights_shape, 1);
139

140 141
    EigenMatrixArrayMap weights_array_2d(weights_data, weights_shape_2d[0],
                                         weights_shape_2d[1]);
142

143 144
    weights_array_2d.colwise() *= variance_array;
  }
S
Sylwester Fraczek 已提交
145 146
}

W
Wangzheee 已提交
147 148 149 150 151 152 153 154 155
ConvBNFusePass::ConvBNFusePass() {
  AddOpCompat(OpCompat("conv2d"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
156
      .IsTensor()
W
Wangzheee 已提交
157 158 159
      .IsOptional()
      .End()
      .AddInput("ResidualData")
160
      .IsTensor()
W
Wangzheee 已提交
161 162 163 164 165 166
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("strides")
167
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
168 169
      .End()
      .AddAttr("paddings")
170
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
171 172 173 174 175 176 177 178 179
      .End()
      .AddAttr("padding_algorithm")
      .IsOptional()
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
      .End()
      .AddAttr("groups")
      .IsNumGE(1)
      .End()
      .AddAttr("dilations")
180
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
      .End()
      .AddAttr("data_format")
      .IsStringIn({"NCHW", "NHWC", "AnyLayout"})
      .End();

  AddOpCompat(OpCompat("batch_norm"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Scale")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .End()
      .AddInput("Mean")
      .IsTensor()
      .End()
      .AddInput("Variance")
      .IsTensor()
      .End()
      .AddOutput("MeanOut")
      .IsTensor()
      .End()
      .AddOutput("VarianceOut")
      .IsTensor()
      .End()
      .AddOutput("SavedMean")
      .IsTensor()
      .End()
      .AddOutput("SavedVariance")
      .IsTensor()
      .End()
      .AddOutput("Y")
      .IsTensor()
      .End()
217 218 219 220
      .AddOutput("ReserveSpace")
      .IsTensor()
      .IsOptional()
      .End()
W
Wangzheee 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
      .AddAttr("epsilon")
      .IsNumLE(0.001f)
      .IsNumGE(0.0f)
      .End();

  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsNumEQ(1)
      .End();
}

241
void ConvBNFusePass::ApplyImpl(ir::Graph* graph) const {
242 243
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
244
  FusePassBase::Init(name_scope_, graph);
S
Sylwester Fraczek 已提交
245 246

  auto* scope = param_scope();
247 248
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope cannot be nullptr."));
S
Sylwester Fraczek 已提交
249 250 251 252 253 254

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
255
          ->assert_is_op_input(conv_type(), "Input");
S
Sylwester Fraczek 已提交
256
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
257
  conv_bn_pattern(conv_input, conv_type(), false /*with_eltwise_add*/);
S
Sylwester Fraczek 已提交
258 259 260 261

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
W
Wangzheee 已提交
262 263 264 265
    if (!IsCompat(subgraph, g)) {
      LOG(WARNING) << "Pass in op compat failed.";
      return;
    }
266
    VLOG(4) << "handle " + conv_type() + "BN fuse";
S
Sylwester Fraczek 已提交
267 268 269
    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
W
Wojciech Uss 已提交
270 271
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,
    // bn_saved_variance
S
Sylwester Fraczek 已提交
272 273
    GET_CONV_BN_NODES(conv_bn_pattern);

W
Wojciech Uss 已提交
274 275 276
    // check if fuse can be done and if MKL-DNN should be used
    FuseOptions fuse_option = FindFuseOption(*conv, *batch_norm);
    if (fuse_option == DO_NOT_FUSE) {
277
      VLOG(3) << "do not perform " + conv_type() + " bn fuse";
W
Wojciech Uss 已提交
278 279 280
      return;
    }

281 282 283 284
    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

S
Sylwester Fraczek 已提交
285 286
    // Create eltwise_y (conv bias) variable
    VarDesc eltwise_y_in_desc(
287
        patterns::PDNodeName("fuse_conv_bn", conv_type() + "_eltwise_y_in"));
288
    eltwise_y_in_desc.SetShape(pten::vectorize(bn_bias_tensor->dims()));
289 290
    eltwise_y_in_desc.SetDataType(
        framework::TransToProtoVarType(bn_bias_tensor->dtype()));
291
    eltwise_y_in_desc.SetLoDLevel(bn_bias->Var()->GetLoDLevel());
W
Wojciech Uss 已提交
292
    eltwise_y_in_desc.SetPersistable(true);
S
Sylwester Fraczek 已提交
293 294 295 296 297 298 299 300 301 302
    auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
    auto* eltwise_y_in_tensor =
        scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();

    // Initialize eltwise_y
    eltwise_y_in_tensor->Resize(bn_bias_tensor->dims());
    std::fill_n(eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
                eltwise_y_in_tensor->numel(), 0.0f);

    // update weights and biases
303 304
    float epsilon =
        BOOST_GET_CONST(float, batch_norm->Op()->GetAttr("epsilon"));
S
Sylwester Fraczek 已提交
305
    recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
306
                               *bn_mean, *bn_variance, eltwise_y_in_tensor,
307
                               epsilon, conv_type());
S
Sylwester Fraczek 已提交
308

W
Wojciech Uss 已提交
309 310 311 312 313 314 315 316 317
    // with MKL-DNN fuse conv+bn into conv with bias
    // without MKL-DNN fuse conv+bn into conv+elementwise_add
    if (fuse_option == FUSE_MKLDNN) {
      auto input_names = conv->Op()->InputNames();
      bool has_bias = std::find(input_names.begin(), input_names.end(),
                                "Bias") != input_names.end();
      if (has_bias && conv->Op()->Input("Bias").size() > 0) {
        // reuse existing conv bias node
        auto conv_bias_names = conv->Op()->Input("Bias");
318 319 320
        PADDLE_ENFORCE_EQ(
            conv_bias_names.size(), 1UL,
            platform::errors::InvalidArgument("Find input var Bais error."));
W
Wojciech Uss 已提交
321 322
        auto* conv_bias_var = scope->FindVar(conv_bias_names[0]);
        auto* conv_bias_tensor = conv_bias_var->GetMutable<LoDTensor>();
323 324 325 326 327 328 329
        PADDLE_ENFORCE_EQ(
            conv_bias_tensor->dims(), eltwise_y_in_tensor->dims(),
            platform::errors::InvalidArgument(
                "Tensor convolution bias(%d) and elementwise y(%d) "
                "must have same dims.",
                conv_bias_tensor->dims().size(),
                eltwise_y_in_tensor->dims().size()));
W
Wojciech Uss 已提交
330 331 332 333 334 335 336 337 338 339 340

        auto eigen_conv_bias = EigenVector<float>::From(*conv_bias_tensor);
        eigen_conv_bias += EigenVector<float>::From(*eltwise_y_in_tensor);
      } else {
        // add new conv_bias node
        conv->Op()->SetInput(
            "Bias", std::vector<std::string>({eltwise_y_in_node->Name()}));
        IR_NODE_LINK_TO(eltwise_y_in_node, conv);
      }
      conv->Op()->SetOutput("Output",
                            std::vector<std::string>({bn_out->Name()}));
W
Wangzheee 已提交
341 342 343 344
      if (!IsCompat(*conv->Op())) {
        LOG(WARNING) << "conv_bn fuse pass in out conv op compat failed.";
        return;
      }
W
Wojciech Uss 已提交
345
      GraphSafeRemoveNodes(
346
          graph,
W
Wojciech Uss 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359
          {conv_out, bn_scale, bn_bias, bn_mean, bn_variance, batch_norm,
           bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance});

      IR_NODE_LINK_TO(conv, bn_out);
      found_conv_bn_count++;
    } else {  // fuse_option == FUSE_NATIVE
      // create an elementwise add node.
      OpDesc desc;
      desc.SetInput("X", std::vector<std::string>({conv_out->Name()}));
      desc.SetInput("Y", std::vector<std::string>({eltwise_y_in_node->Name()}));
      desc.SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
      desc.SetType("elementwise_add");
      desc.SetAttr("axis", 1);
W
Wangzheee 已提交
360 361 362 363 364
      if (!IsCompat(desc)) {
        LOG(WARNING)
            << "conv_bn fuse pass in out elementwise_add op compat failed.";
        return;
      }
W
Wojciech Uss 已提交
365 366
      auto eltwise_op = g->CreateOpNode(&desc);  // OpDesc will be copied.

367 368 369
      GraphSafeRemoveNodes(graph, {bn_scale, bn_bias, bn_mean, bn_variance,
                                   batch_norm, bn_mean_out, bn_variance_out,
                                   bn_saved_mean, bn_saved_variance});
W
Wojciech Uss 已提交
370 371 372 373 374 375

      IR_NODE_LINK_TO(conv_out, eltwise_op);
      IR_NODE_LINK_TO(eltwise_y_in_node, eltwise_op);
      IR_NODE_LINK_TO(eltwise_op, bn_out);
      found_conv_bn_count++;
    }
S
Sylwester Fraczek 已提交
376 377
  };

378
  gpd(graph, handler);
S
Sylwester Fraczek 已提交
379 380 381 382

  AddStatis(found_conv_bn_count);
}

W
Wangzheee 已提交
383 384 385 386 387 388 389 390 391
ConvEltwiseAddBNFusePass::ConvEltwiseAddBNFusePass() {
  AddOpCompat(OpCompat("conv2d"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
392
      .IsTensor()
W
Wangzheee 已提交
393 394 395
      .IsOptional()
      .End()
      .AddInput("ResidualData")
396
      .IsTensor()
W
Wangzheee 已提交
397 398 399 400 401 402
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("strides")
403
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
404 405
      .End()
      .AddAttr("paddings")
406
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
407 408 409 410 411 412 413 414 415
      .End()
      .AddAttr("padding_algorithm")
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
      .IsOptional()
      .End()
      .AddAttr("groups")
      .IsNumGE(1)
      .End()
      .AddAttr("dilations")
416
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
      .End()
      .AddAttr("data_format")
      .IsStringIn({"NCHW", "NHWC", "AnyLayout"})
      .End();

  AddOpCompat(OpCompat("batch_norm"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Scale")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .End()
      .AddInput("Mean")
      .IsTensor()
      .End()
      .AddInput("Variance")
      .IsTensor()
      .End()
      .AddOutput("MeanOut")
      .IsTensor()
      .End()
      .AddOutput("VarianceOut")
      .IsTensor()
      .End()
      .AddOutput("SavedMean")
      .IsTensor()
      .End()
      .AddOutput("SavedVariance")
      .IsTensor()
      .End()
      .AddOutput("Y")
      .IsTensor()
      .End()
453 454 455 456
      .AddOutput("ReserveSpace")
      .IsTensor()
      .IsOptional()
      .End()
W
Wangzheee 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
      .AddAttr("epsilon")
      .IsNumLE(0.001f)
      .IsNumGE(0.0f)
      .End();

  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsNumEQ(1)
      .End();
}

477
void ConvEltwiseAddBNFusePass::ApplyImpl(ir::Graph* graph) const {
478 479
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
480
  FusePassBase::Init(name_scope_, graph);
S
Sylwester Fraczek 已提交
481 482

  auto* scope = param_scope();
483 484
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope cannot be nullptr."));
S
Sylwester Fraczek 已提交
485 486 487 488 489 490

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
491
          ->assert_is_op_input(conv_type(), "Input");
S
Sylwester Fraczek 已提交
492
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
493
  conv_bn_pattern(conv_input, conv_type(), true /*with_eltwise_add*/);
S
Sylwester Fraczek 已提交
494 495 496 497

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
W
Wangzheee 已提交
498 499 500 501
    if (!IsCompat(subgraph, g)) {
      LOG(WARNING) << "Pass in op compat failed.";
      return;
    }
502
    VLOG(4) << "handle " + conv_type() + "BN fuse";
S
Sylwester Fraczek 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,bn_saved_variance
    GET_CONV_BN_NODES(conv_bn_pattern);
    // OPERATORS
    GET_IR_NODE_FROM_SUBGRAPH(eltwise, eltwise, conv_bn_pattern);
    // BIAS inputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_y_in, eltwise_y_in, conv_bn_pattern);
    // BIAS outputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_out, eltwise_out, conv_bn_pattern);

    // Get eltwise_y (conv bias) variable
    auto* eltwise_y_in_tensor =
        scope->FindVar(eltwise_y_in->Name())->GetMutable<LoDTensor>();

    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

    // update weights and biases
524 525
    float epsilon =
        BOOST_GET_CONST(float, batch_norm->Op()->GetAttr("epsilon"));
526 527 528 529 530 531 532 533

    // if bias is an input to other ops as well then we cannot overwrite it
    // so we create separate elementwise Y in nodes
    if (eltwise_y_in->outputs.size() > 1) {
      // Make a copy of eltwise Y input tensor
      // Create eltwise_y (conv bias) variable
      VarDesc eltwise_y_in_desc(patterns::PDNodeName(
          name_scope_, "eltwise_y_in" + std::to_string(found_conv_bn_count)));
534
      eltwise_y_in_desc.SetShape(pten::vectorize(eltwise_y_in_tensor->dims()));
535 536
      eltwise_y_in_desc.SetDataType(
          framework::TransToProtoVarType(eltwise_y_in_tensor->dtype()));
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
      eltwise_y_in_desc.SetLoDLevel(eltwise_y_in->Var()->GetLoDLevel());
      eltwise_y_in_desc.SetPersistable(true);
      auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
      auto* eltwise_y_in_tensor_ex =
          scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();

      // Initialize eltwise_y
      TensorCopy(*eltwise_y_in_tensor, platform::CPUPlace(),
                 eltwise_y_in_tensor_ex);

      recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
                                 *bn_mean, *bn_variance, eltwise_y_in_tensor_ex,
                                 epsilon, conv_type());
      // Set new var
      eltwise->Op()->RenameInput(eltwise_y_in->Name(),
                                 eltwise_y_in_node->Name());
      // Link new bias node to eltwise
      IR_NODE_LINK_TO(eltwise_y_in_node, eltwise);
      // unlink original bias from eltwise_op
      eltwise_y_in->outputs.erase(
          std::remove_if(eltwise_y_in->outputs.begin(),
                         eltwise_y_in->outputs.end(),
                         [&](Node*& n) {
                           return n->id() == eltwise->id() ? true : false;
                         }),
          eltwise_y_in->outputs.end());
    } else {
      recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
                                 *bn_mean, *bn_variance, eltwise_y_in_tensor,
                                 epsilon, conv_type());
    }
S
Sylwester Fraczek 已提交
568 569 570 571

    // Update the elementwise_add node
    eltwise->Op()->SetAttr("axis", 1);
    eltwise->Op()->SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
W
Wangzheee 已提交
572 573 574 575 576
    if (!IsCompat(*eltwise->Op())) {
      LOG(WARNING)
          << "conv_eltwise_bn fuse pass in out eltwise op compat failed.";
      return;
    }
S
Sylwester Fraczek 已提交
577
    GraphSafeRemoveNodes(
578
        graph,
S
Sylwester Fraczek 已提交
579 580 581 582 583 584 585 586
        {bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out,
         bn_variance_out, bn_saved_mean, bn_saved_variance, eltwise_out});

    IR_NODE_LINK_TO(eltwise, bn_out);

    found_conv_bn_count++;
  };

587
  gpd(graph, handler);
S
Sylwester Fraczek 已提交
588 589 590 591

  AddStatis(found_conv_bn_count);
}

W
Wangzheee 已提交
592 593 594 595 596 597 598 599 600
ConvTransposeBNFusePass::ConvTransposeBNFusePass() {
  AddOpCompat(OpCompat("conv2d_transpose"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
601
      .IsTensor()
W
Wangzheee 已提交
602 603 604 605 606
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
607 608 609 610 611 612 613 614 615
      .AddAttr("output_padding")
      .IsType<std::vector<int>>()
      .IsOptional()
      .End()
      .AddAttr("output_size")
      .IsType<std::vector<int>>()
      .IsOptional()
      .End()
      .AddAttr("groups")
616
      .IsNumEQ(1)
617 618 619 620
      .End()
      .AddAttr("dilations")
      .IsType<std::vector<int>>()
      .End()
W
Wangzheee 已提交
621
      .AddAttr("strides")
622
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
623 624
      .End()
      .AddAttr("paddings")
625
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
626 627
      .End()
      .AddAttr("padding_algorithm")
628
      .IsOptional()
W
Wangzheee 已提交
629
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
630 631
      .End()
      .AddAttr("data_format")
632
      .IsStringIn({"NCHW", "AnyLayout"})
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
      .End();
}

ConvTransposeEltwiseAddBNFusePass::ConvTransposeEltwiseAddBNFusePass() {
  AddOpCompat(OpCompat("conv2d_transpose"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("output_padding")
      .IsType<std::vector<int>>()
      .IsOptional()
      .End()
      .AddAttr("output_size")
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
657 658 659
      .IsOptional()
      .End()
      .AddAttr("groups")
660
      .IsNumEQ(1)
W
Wangzheee 已提交
661 662
      .End()
      .AddAttr("dilations")
663 664 665 666 667 668 669 670 671
      .IsType<std::vector<int>>()
      .End()
      .AddAttr("strides")
      .IsType<std::vector<int>>()
      .End()
      .AddAttr("paddings")
      .IsType<std::vector<int>>()
      .End()
      .AddAttr("padding_algorithm")
672
      .IsOptional()
673
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
W
Wangzheee 已提交
674 675
      .End()
      .AddAttr("data_format")
676
      .IsStringIn({"NCHW", "AnyLayout"})
W
Wangzheee 已提交
677 678 679
      .End();
}

680 681
DepthwiseConvBNFusePass::DepthwiseConvBNFusePass() {
  AddOpCompat(OpCompat("depthwise_conv2d"))
W
Wangzheee 已提交
682 683 684 685 686 687 688
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
689 690 691 692 693
      .IsTensor()
      .IsOptional()
      .End()
      .AddInput("ResidualData")
      .IsTensor()
W
Wangzheee 已提交
694 695 696 697 698 699
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("strides")
700
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
701 702
      .End()
      .AddAttr("paddings")
703
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
704 705 706
      .End()
      .AddAttr("padding_algorithm")
      .IsOptional()
707
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
W
Wangzheee 已提交
708 709 710 711 712
      .End()
      .AddAttr("groups")
      .IsNumGE(1)
      .End()
      .AddAttr("dilations")
713
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
714 715 716 717 718 719
      .End()
      .AddAttr("data_format")
      .IsStringIn({"NCHW", "NHWC", "AnyLayout"})
      .End();
}

S
Sylwester Fraczek 已提交
720 721 722 723 724 725 726
}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(conv_bn_fuse_pass, paddle::framework::ir::ConvBNFusePass);
REGISTER_PASS(conv_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::ConvEltwiseAddBNFusePass);
727 728 729 730
REGISTER_PASS(conv_transpose_bn_fuse_pass,
              paddle::framework::ir::ConvTransposeBNFusePass);
REGISTER_PASS(conv_transpose_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::ConvTransposeEltwiseAddBNFusePass);
731 732 733 734
REGISTER_PASS(depthwise_conv_bn_fuse_pass,
              paddle::framework::ir::DepthwiseConvBNFusePass);
REGISTER_PASS(depthwise_conv_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::DepthwiseConvEltwiseAddBNFusePass);
P
Pei Yang 已提交
735 736 737
REGISTER_PASS_CAPABILITY(conv_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
738
            .LE("conv2d", 1)
P
Pei Yang 已提交
739 740 741 742
            .EQ("batch_norm", 0));
REGISTER_PASS_CAPABILITY(conv_eltwiseadd_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
743
            .LE("conv2d", 1)
744
            .LE("elementwise_add", 1)
P
Pei Yang 已提交
745
            .EQ("batch_norm", 0));
746 747 748 749 750 751
REGISTER_PASS_CAPABILITY(conv_transpose_eltwiseadd_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .LE("conv2d_transpose", 2)
            .LE("elementwise_add", 1)
            .EQ("batch_norm", 0));
752 753 754 755 756
REGISTER_PASS_CAPABILITY(conv_transpose_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .LE("conv2d_transpose", 2)
            .EQ("batch_norm", 0));