yolov3_loss_op.h 21.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

28
using Array5 = Eigen::DSizes<int64_t, 5>;
29 30 31

template <typename T>
static inline bool isZero(T x) {
D
dengkaipeng 已提交
32
  return fabs(x) < 1e-6;
33 34
}

D
dengkaipeng 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
template <typename T>
static inline void CalcL1LossWithWeight(const Tensor& x, const Tensor& y,
                                        const Tensor& weight,
                                        const T loss_weight, T* loss) {
  int n = x.dims()[0];
  int stride = x.numel() / n;
  const T* x_data = x.data<T>();
  const T* y_data = y.data<T>();
  const T* weight_data = weight.data<T>();

  for (int i = 0; i < n; i++) {
    for (int j = 0; j < stride; j++) {
      loss[i] += fabs(y_data[j] - x_data[j]) * weight_data[j] * loss_weight;
    }
    x_data += stride;
    y_data += stride;
    weight_data += stride;
  }
}

template <typename T>
static void CalcL1LossGradWithWeight(const T* loss_grad, Tensor* grad,
                                     const Tensor& x, const Tensor& y,
                                     const Tensor& weight) {
  int n = x.dims()[0];
  int stride = x.numel() / n;
  T* grad_data = grad->data<T>();
  const T* x_data = x.data<T>();
  const T* y_data = y.data<T>();
  const T* weight_data = weight.data<T>();

  for (int i = 0; i < n; i++) {
    for (int j = 0; j < stride; j++) {
      grad_data[j] = weight_data[j] * loss_grad[i];
      if (x_data[j] < y_data[j]) grad_data[j] *= -1.0;
    }
    grad_data += stride;
    x_data += stride;
    y_data += stride;
    weight_data += stride;
  }
}

78
template <typename T>
79 80 81 82 83
static inline void CalcMSEWithWeight(const Tensor& x, const Tensor& y,
                                     const Tensor& weight, const T loss_weight,
                                     T* loss) {
  int n = x.dims()[0];
  int stride = x.numel() / n;
84 85 86
  const T* x_data = x.data<T>();
  const T* y_data = y.data<T>();
  const T* weight_data = weight.data<T>();
87

88 89 90 91 92 93 94
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < stride; j++) {
      loss[i] += pow(y_data[j] - x_data[j], 2) * weight_data[j] * loss_weight;
    }
    x_data += stride;
    y_data += stride;
    weight_data += stride;
95 96 97
  }
}

98
template <typename T>
99 100 101 102 103
static void CalcMSEGradWithWeight(const T* loss_grad, Tensor* grad,
                                  const Tensor& x, const Tensor& y,
                                  const Tensor& weight) {
  int n = x.dims()[0];
  int stride = x.numel() / n;
104 105 106 107 108
  T* grad_data = grad->data<T>();
  const T* x_data = x.data<T>();
  const T* y_data = y.data<T>();
  const T* weight_data = weight.data<T>();

109 110 111 112 113 114 115 116 117
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < stride; j++) {
      grad_data[j] =
          2.0 * weight_data[j] * (x_data[j] - y_data[j]) * loss_grad[i];
    }
    grad_data += stride;
    x_data += stride;
    y_data += stride;
    weight_data += stride;
D
dengkaipeng 已提交
118
  }
119 120
}

121
template <typename T>
122 123 124 125 126
static inline void CalcSCEWithWeight(const Tensor& x, const Tensor& label,
                                     const Tensor& weight, const T loss_weight,
                                     T* loss) {
  int n = x.dims()[0];
  int stride = x.numel() / n;
127
  const T* x_data = x.data<T>();
128
  const T* label_data = label.data<T>();
129 130
  const T* weight_data = weight.data<T>();

131 132 133 134 135 136 137 138 139 140
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < stride; j++) {
      T term1 = (x_data[j] > 0) ? x_data[j] : 0;
      T term2 = x_data[j] * label_data[j];
      T term3 = std::log(1.0 + std::exp(-std::abs(x_data[j])));
      loss[i] += (term1 - term2 + term3) * weight_data[j] * loss_weight;
    }
    x_data += stride;
    label_data += stride;
    weight_data += stride;
D
dengkaipeng 已提交
141
  }
142 143 144
}

template <typename T>
145 146 147 148 149
static inline void CalcSCEGradWithWeight(const T* loss_grad, Tensor* grad,
                                         const Tensor& x, const Tensor& label,
                                         const Tensor& weight) {
  int n = x.dims()[0];
  int stride = x.numel() / n;
150 151
  T* grad_data = grad->data<T>();
  const T* x_data = x.data<T>();
152
  const T* label_data = label.data<T>();
153 154
  const T* weight_data = weight.data<T>();

155 156 157 158 159 160 161 162 163
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < stride; j++) {
      grad_data[j] = (1.0 / (1.0 + std::exp(-x_data[j])) - label_data[j]) *
                     weight_data[j] * loss_grad[i];
    }
    grad_data += stride;
    x_data += stride;
    label_data += stride;
    weight_data += stride;
164 165 166 167
  }
}

template <typename T>
168 169 170 171
static void SplitPredResult(const Tensor& input, Tensor* pred_conf,
                            Tensor* pred_class, Tensor* pred_x, Tensor* pred_y,
                            Tensor* pred_w, Tensor* pred_h,
                            const int anchor_num, const int class_num) {
172 173 174 175 176 177
  const int n = input.dims()[0];
  const int h = input.dims()[2];
  const int w = input.dims()[3];
  const int box_attr_num = 5 + class_num;

  auto input_t = EigenTensor<T, 4>::From(input);
178 179
  auto pred_conf_t = EigenTensor<T, 4>::From(*pred_conf);
  auto pred_class_t = EigenTensor<T, 5>::From(*pred_class);
180 181 182 183 184 185 186 187 188
  auto pred_x_t = EigenTensor<T, 4>::From(*pred_x);
  auto pred_y_t = EigenTensor<T, 4>::From(*pred_y);
  auto pred_w_t = EigenTensor<T, 4>::From(*pred_w);
  auto pred_h_t = EigenTensor<T, 4>::From(*pred_h);

  for (int i = 0; i < n; i++) {
    for (int an_idx = 0; an_idx < anchor_num; an_idx++) {
      for (int j = 0; j < h; j++) {
        for (int k = 0; k < w; k++) {
189
          pred_x_t(i, an_idx, j, k) = input_t(i, box_attr_num * an_idx, j, k);
190
          pred_y_t(i, an_idx, j, k) =
191
              input_t(i, box_attr_num * an_idx + 1, j, k);
192
          pred_w_t(i, an_idx, j, k) =
D
dengkaipeng 已提交
193
              input_t(i, box_attr_num * an_idx + 2, j, k);
194
          pred_h_t(i, an_idx, j, k) =
D
dengkaipeng 已提交
195
              input_t(i, box_attr_num * an_idx + 3, j, k);
196

197
          pred_conf_t(i, an_idx, j, k) =
198
              input_t(i, box_attr_num * an_idx + 4, j, k);
199 200

          for (int c = 0; c < class_num; c++) {
201
            pred_class_t(i, an_idx, j, k, c) =
202
                input_t(i, box_attr_num * an_idx + 5 + c, j, k);
203 204 205 206 207 208 209 210
          }
        }
      }
    }
  }
}

template <typename T>
D
dengkaipeng 已提交
211 212 213 214 215 216 217 218 219 220 221 222
static T CalcBoxIoU(std::vector<T> box1, std::vector<T> box2) {
  T b1_x1 = box1[0] - box1[2] / 2;
  T b1_x2 = box1[0] + box1[2] / 2;
  T b1_y1 = box1[1] - box1[3] / 2;
  T b1_y2 = box1[1] + box1[3] / 2;
  T b2_x1 = box2[0] - box2[2] / 2;
  T b2_x2 = box2[0] + box2[2] / 2;
  T b2_y1 = box2[1] - box2[3] / 2;
  T b2_y2 = box2[1] + box2[3] / 2;

  T b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1);
  T b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1);
223 224 225 226 227

  T inter_rect_x1 = std::max(b1_x1, b2_x1);
  T inter_rect_y1 = std::max(b1_y1, b2_y1);
  T inter_rect_x2 = std::min(b1_x2, b2_x2);
  T inter_rect_y2 = std::min(b1_y2, b2_y2);
D
dengkaipeng 已提交
228 229
  T inter_area = std::max(inter_rect_x2 - inter_rect_x1, static_cast<T>(0.0)) *
                 std::max(inter_rect_y2 - inter_rect_y1, static_cast<T>(0.0));
230

D
dengkaipeng 已提交
231
  return inter_area / (b1_area + b2_area - inter_area);
232 233 234
}

template <typename T>
D
dengkaipeng 已提交
235 236
static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
                            const float ignore_thresh, std::vector<int> anchors,
237 238 239 240
                            const int input_size, const int grid_size,
                            Tensor* obj_mask, Tensor* noobj_mask, Tensor* tx,
                            Tensor* ty, Tensor* tw, Tensor* th, Tensor* tweight,
                            Tensor* tconf, Tensor* tclass) {
D
dengkaipeng 已提交
241 242
  const int n = gt_box.dims()[0];
  const int b = gt_box.dims()[1];
243
  const int anchor_num = anchors.size() / 2;
D
dengkaipeng 已提交
244 245
  auto gt_box_t = EigenTensor<T, 3>::From(gt_box);
  auto gt_label_t = EigenTensor<int, 2>::From(gt_label);
246 247
  auto obj_mask_t = EigenTensor<T, 4>::From(*obj_mask).setConstant(0);
  auto noobj_mask_t = EigenTensor<T, 4>::From(*noobj_mask).setConstant(1);
248 249 250 251
  auto tx_t = EigenTensor<T, 4>::From(*tx).setConstant(0.0);
  auto ty_t = EigenTensor<T, 4>::From(*ty).setConstant(0.0);
  auto tw_t = EigenTensor<T, 4>::From(*tw).setConstant(0.0);
  auto th_t = EigenTensor<T, 4>::From(*th).setConstant(0.0);
252
  auto tweight_t = EigenTensor<T, 4>::From(*tweight).setConstant(0.0);
253 254 255 256 257
  auto tconf_t = EigenTensor<T, 4>::From(*tconf).setConstant(0.0);
  auto tclass_t = EigenTensor<T, 5>::From(*tclass).setConstant(0.0);

  for (int i = 0; i < n; i++) {
    for (int j = 0; j < b; j++) {
258
      if (isZero<T>(gt_box_t(i, j, 2)) && isZero<T>(gt_box_t(i, j, 3))) {
259 260 261
        continue;
      }

D
dengkaipeng 已提交
262 263 264
      int cur_label = gt_label_t(i, j);
      T gx = gt_box_t(i, j, 0) * grid_size;
      T gy = gt_box_t(i, j, 1) * grid_size;
265 266
      T gw = gt_box_t(i, j, 2) * input_size;
      T gh = gt_box_t(i, j, 3) * input_size;
267 268 269
      int gi = static_cast<int>(gx);
      int gj = static_cast<int>(gy);

270
      T max_iou = static_cast<T>(0);
271 272
      T iou;
      int best_an_index = -1;
D
dengkaipeng 已提交
273
      std::vector<T> gt_box_shape({0, 0, gw, gh});
274 275 276
      for (int an_idx = 0; an_idx < anchor_num; an_idx++) {
        std::vector<T> anchor_shape({0, 0, static_cast<T>(anchors[2 * an_idx]),
                                     static_cast<T>(anchors[2 * an_idx + 1])});
D
dengkaipeng 已提交
277
        iou = CalcBoxIoU<T>(gt_box_shape, anchor_shape);
278 279 280 281 282
        if (iou > max_iou) {
          max_iou = iou;
          best_an_index = an_idx;
        }
        if (iou > ignore_thresh) {
283
          noobj_mask_t(i, an_idx, gj, gi) = static_cast<T>(0.0);
284 285
        }
      }
286 287
      obj_mask_t(i, best_an_index, gj, gi) = static_cast<T>(1.0);
      noobj_mask_t(i, best_an_index, gj, gi) = static_cast<T>(0.0);
288 289
      tx_t(i, best_an_index, gj, gi) = gx - gi;
      ty_t(i, best_an_index, gj, gi) = gy - gj;
D
dengkaipeng 已提交
290 291
      tw_t(i, best_an_index, gj, gi) = log(gw / anchors[2 * best_an_index]);
      th_t(i, best_an_index, gj, gi) = log(gh / anchors[2 * best_an_index + 1]);
292 293
      tweight_t(i, best_an_index, gj, gi) =
          2.0 - gt_box_t(i, j, 2) * gt_box_t(i, j, 3);
D
dengkaipeng 已提交
294
      tclass_t(i, best_an_index, gj, gi, cur_label) = 1;
295
      tconf_t(i, best_an_index, gj, gi) = 1;
296 297
    }
  }
298 299
}

300 301
template <typename T>
static void AddAllGradToInputGrad(
302 303 304 305 306 307 308 309 310 311
    Tensor* grad, const Tensor& grad_x, const Tensor& grad_y,
    const Tensor& grad_w, const Tensor& grad_h, const Tensor& grad_conf_target,
    const Tensor& grad_conf_notarget, const Tensor& grad_class,
    const int class_num, const float loss_weight_xy, const float loss_weight_wh,
    const float loss_weight_conf_target, const float loss_weight_conf_notarget,
    const float loss_weight_class) {
  const int n = grad_x.dims()[0];
  const int an_num = grad_x.dims()[1];
  const int h = grad_x.dims()[2];
  const int w = grad_x.dims()[3];
312 313 314 315 316 317
  const int attr_num = class_num + 5;
  auto grad_t = EigenTensor<T, 4>::From(*grad).setConstant(0.0);
  auto grad_x_t = EigenTensor<T, 4>::From(grad_x);
  auto grad_y_t = EigenTensor<T, 4>::From(grad_y);
  auto grad_w_t = EigenTensor<T, 4>::From(grad_w);
  auto grad_h_t = EigenTensor<T, 4>::From(grad_h);
D
dengkaipeng 已提交
318 319
  auto grad_conf_target_t = EigenTensor<T, 4>::From(grad_conf_target);
  auto grad_conf_notarget_t = EigenTensor<T, 4>::From(grad_conf_notarget);
320 321 322 323 324 325
  auto grad_class_t = EigenTensor<T, 5>::From(grad_class);

  for (int i = 0; i < n; i++) {
    for (int j = 0; j < an_num; j++) {
      for (int k = 0; k < h; k++) {
        for (int l = 0; l < w; l++) {
326
          grad_t(i, j * attr_num, k, l) = grad_x_t(i, j, k, l) * loss_weight_xy;
327
          grad_t(i, j * attr_num + 1, k, l) =
328
              grad_y_t(i, j, k, l) * loss_weight_xy;
D
dengkaipeng 已提交
329
          grad_t(i, j * attr_num + 2, k, l) =
330
              grad_w_t(i, j, k, l) * loss_weight_wh;
D
dengkaipeng 已提交
331
          grad_t(i, j * attr_num + 3, k, l) =
332
              grad_h_t(i, j, k, l) * loss_weight_wh;
333
          grad_t(i, j * attr_num + 4, k, l) =
334
              grad_conf_target_t(i, j, k, l) * loss_weight_conf_target;
335
          grad_t(i, j * attr_num + 4, k, l) +=
336
              grad_conf_notarget_t(i, j, k, l) * loss_weight_conf_notarget;
337 338 339

          for (int c = 0; c < class_num; c++) {
            grad_t(i, j * attr_num + 5 + c, k, l) =
340
                grad_class_t(i, j, k, l, c) * loss_weight_class;
341 342 343 344 345 346 347
          }
        }
      }
    }
  }
}

348
template <typename T>
349 350 351 352
class Yolov3LossKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
353 354
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
D
dengkaipeng 已提交
355
    auto* loss = ctx.Output<Tensor>("Loss");
356 357
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
358
    int input_size = ctx.Attr<int>("input_size");
359
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
D
dengkaipeng 已提交
360 361 362 363 364 365
    float loss_weight_xy = ctx.Attr<float>("loss_weight_xy");
    float loss_weight_wh = ctx.Attr<float>("loss_weight_wh");
    float loss_weight_conf_target = ctx.Attr<float>("loss_weight_conf_target");
    float loss_weight_conf_notarget =
        ctx.Attr<float>("loss_weight_conf_notarget");
    float loss_weight_class = ctx.Attr<float>("loss_weight_class");
366 367 368 369 370 371 372

    const int n = input->dims()[0];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;

    Tensor pred_x, pred_y, pred_w, pred_h;
373
    Tensor pred_conf, pred_class;
374 375 376 377
    pred_x.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_y.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_w.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_h.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
378 379
    pred_conf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_class.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
380 381
    SplitPredResult<T>(*input, &pred_conf, &pred_class, &pred_x, &pred_y,
                       &pred_w, &pred_h, an_num, class_num);
382

D
dengkaipeng 已提交
383
    Tensor obj_mask, noobj_mask;
384 385 386
    Tensor tx, ty, tw, th, tweight, tconf, tclass;
    obj_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    noobj_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
387 388 389 390
    tx.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    ty.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tw.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    th.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
391
    tweight.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
392 393
    tconf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tclass.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
394 395 396 397 398 399 400 401 402 403
    PreProcessGTBox<T>(*gt_box, *gt_label, ignore_thresh, anchors, input_size,
                       h, &obj_mask, &noobj_mask, &tx, &ty, &tw, &th, &tweight,
                       &tconf, &tclass);

    Tensor obj_weight;
    obj_weight.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    auto obj_weight_t = EigenTensor<T, 4>::From(obj_weight);
    auto obj_mask_t = EigenTensor<T, 4>::From(obj_mask);
    auto tweight_t = EigenTensor<T, 4>::From(tweight);
    obj_weight_t = obj_mask_t * tweight_t;
D
dengkaipeng 已提交
404

405
    Tensor obj_mask_expand;
406 407 408 409 410 411
    obj_mask_expand.mutable_data<T>({n, an_num, h, w, class_num},
                                    ctx.GetPlace());
    auto obj_mask_expand_t = EigenTensor<T, 5>::From(obj_mask_expand);
    obj_mask_expand_t = obj_mask_t.reshape(Array5(n, an_num, h, w, 1))
                            .broadcast(Array5(1, 1, 1, 1, class_num));

412 413 414 415
    T* loss_data = loss->mutable_data<T>({n}, ctx.GetPlace());
    memset(loss_data, 0, n * sizeof(T));
    CalcSCEWithWeight<T>(pred_x, tx, obj_weight, loss_weight_xy, loss_data);
    CalcSCEWithWeight<T>(pred_y, ty, obj_weight, loss_weight_xy, loss_data);
D
dengkaipeng 已提交
416 417
    CalcL1LossWithWeight<T>(pred_w, tw, obj_weight, loss_weight_wh, loss_data);
    CalcL1LossWithWeight<T>(pred_h, th, obj_weight, loss_weight_wh, loss_data);
418 419 420 421 422 423
    CalcSCEWithWeight<T>(pred_conf, tconf, obj_mask, loss_weight_conf_target,
                         loss_data);
    CalcSCEWithWeight<T>(pred_conf, tconf, noobj_mask,
                         loss_weight_conf_notarget, loss_data);
    CalcSCEWithWeight<T>(pred_class, tclass, obj_mask_expand, loss_weight_class,
                         loss_data);
424 425 426
  }
};

427
template <typename T>
428 429 430
class Yolov3LossGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
431
    auto* input = ctx.Input<Tensor>("X");
D
dengkaipeng 已提交
432 433
    auto* gt_box = ctx.Input<Tensor>("GTBox");
    auto* gt_label = ctx.Input<Tensor>("GTLabel");
434 435 436 437
    auto anchors = ctx.Attr<std::vector<int>>("anchors");
    int class_num = ctx.Attr<int>("class_num");
    float ignore_thresh = ctx.Attr<float>("ignore_thresh");
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
438 439
    auto* loss_grad = ctx.Input<Tensor>(framework::GradVarName("Loss"));
    const T* loss_grad_data = loss_grad->data<T>();
440
    int input_size = ctx.Attr<int>("input_size");
D
dengkaipeng 已提交
441 442 443 444 445 446
    float loss_weight_xy = ctx.Attr<float>("loss_weight_xy");
    float loss_weight_wh = ctx.Attr<float>("loss_weight_wh");
    float loss_weight_conf_target = ctx.Attr<float>("loss_weight_conf_target");
    float loss_weight_conf_notarget =
        ctx.Attr<float>("loss_weight_conf_notarget");
    float loss_weight_class = ctx.Attr<float>("loss_weight_class");
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461

    const int n = input->dims()[0];
    const int c = input->dims()[1];
    const int h = input->dims()[2];
    const int w = input->dims()[3];
    const int an_num = anchors.size() / 2;

    Tensor pred_x, pred_y, pred_w, pred_h;
    Tensor pred_conf, pred_class;
    pred_x.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_y.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_w.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_h.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_conf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    pred_class.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
462 463
    SplitPredResult<T>(*input, &pred_conf, &pred_class, &pred_x, &pred_y,
                       &pred_w, &pred_h, an_num, class_num);
464 465

    Tensor obj_mask, noobj_mask;
466 467 468
    Tensor tx, ty, tw, th, tweight, tconf, tclass;
    obj_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    noobj_mask.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
469 470 471 472
    tx.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    ty.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tw.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    th.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
473
    tweight.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
474 475
    tconf.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    tclass.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
476 477 478 479 480 481 482 483 484 485
    PreProcessGTBox<T>(*gt_box, *gt_label, ignore_thresh, anchors, input_size,
                       h, &obj_mask, &noobj_mask, &tx, &ty, &tw, &th, &tweight,
                       &tconf, &tclass);

    Tensor obj_weight;
    obj_weight.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    auto obj_weight_t = EigenTensor<T, 4>::From(obj_weight);
    auto obj_mask_t = EigenTensor<T, 4>::From(obj_mask);
    auto tweight_t = EigenTensor<T, 4>::From(tweight);
    obj_weight_t = obj_mask_t * tweight_t;
486 487

    Tensor obj_mask_expand;
488 489 490 491 492
    obj_mask_expand.mutable_data<T>({n, an_num, h, w, class_num},
                                    ctx.GetPlace());
    auto obj_mask_expand_t = EigenTensor<T, 5>::From(obj_mask_expand);
    obj_mask_expand_t = obj_mask_t.reshape(Array5(n, an_num, h, w, 1))
                            .broadcast(Array5(1, 1, 1, 1, class_num));
493 494

    Tensor grad_x, grad_y, grad_w, grad_h;
D
dengkaipeng 已提交
495
    Tensor grad_conf_target, grad_conf_notarget, grad_class;
496 497 498 499
    grad_x.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    grad_y.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    grad_w.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    grad_h.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
D
dengkaipeng 已提交
500 501
    grad_conf_target.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
    grad_conf_notarget.mutable_data<T>({n, an_num, h, w}, ctx.GetPlace());
502
    grad_class.mutable_data<T>({n, an_num, h, w, class_num}, ctx.GetPlace());
503 504
    CalcSCEGradWithWeight<T>(loss_grad_data, &grad_x, pred_x, tx, obj_weight);
    CalcSCEGradWithWeight<T>(loss_grad_data, &grad_y, pred_y, ty, obj_weight);
D
dengkaipeng 已提交
505 506 507 508
    CalcL1LossGradWithWeight<T>(loss_grad_data, &grad_w, pred_w, tw,
                                obj_weight);
    CalcL1LossGradWithWeight<T>(loss_grad_data, &grad_h, pred_h, th,
                                obj_weight);
509 510 511 512 513 514
    CalcSCEGradWithWeight<T>(loss_grad_data, &grad_conf_target, pred_conf,
                             tconf, obj_mask);
    CalcSCEGradWithWeight<T>(loss_grad_data, &grad_conf_notarget, pred_conf,
                             tconf, noobj_mask);
    CalcSCEGradWithWeight<T>(loss_grad_data, &grad_class, pred_class, tclass,
                             obj_mask_expand);
515 516

    input_grad->mutable_data<T>({n, c, h, w}, ctx.GetPlace());
517 518 519 520 521
    AddAllGradToInputGrad<T>(input_grad, grad_x, grad_y, grad_w, grad_h,
                             grad_conf_target, grad_conf_notarget, grad_class,
                             class_num, loss_weight_xy, loss_weight_wh,
                             loss_weight_conf_target, loss_weight_conf_notarget,
                             loss_weight_class);
522 523 524 525 526
  }
};

}  // namespace operators
}  // namespace paddle