test_rmsprop_op.py 9.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import unittest
18

19
import numpy as np
20 21
import paddle.fluid.core as core
from paddle.fluid.op import Operator
S
sneaxiy 已提交
22
import paddle.fluid as fluid
M
MRXLT 已提交
23
import paddle
S
sneaxiy 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45


def create_selected_rows_and_tensor(scope, place, height, row_num,
                                    embedding_size):
    sr = scope.var("@selected_rows@").get_selected_rows()
    tensor = scope.var("grad").get_tensor()

    rows = np.random.random_integers(
        low=0, high=height - 1, size=[row_num, ]).astype('int64')
    sr_val = np.random.random(size=[row_num, embedding_size]).astype('float32')

    sr.set_height(height)
    sr.set_rows(rows)
    sr.get_tensor().set(sr_val, place)

    tensor_val = np.zeros(shape=[height, embedding_size], dtype='float32')
    for i in range(row_num):
        row = rows[i]
        tensor_val[row, :] = tensor_val[row, :] + sr_val[i, :]

    tensor.set(tensor_val, place)
    return tensor_val, sr_val
46 47 48


class TestBase(unittest.TestCase):
S
sneaxiy 已提交
49 50 51 52 53 54 55
    def setup(self,
              place,
              is_sparse,
              centered,
              size,
              row_num=None,
              epsilon=1e-6):
56 57
        np.random.seed(5)  # fix seed

S
sneaxiy 已提交
58 59 60
        self.scope = fluid.global_scope()
        self.place = place

61
        self.param_name = "param"
S
sneaxiy 已提交
62
        self.param = np.random.random(size).astype("float32")
63 64

        self.mean_square_name = "mean_square"
S
sneaxiy 已提交
65 66
        self.mean_square = np.random.uniform(
            low=1, high=2, size=size).astype("float32")
67 68

        self.mean_grad_name = "mean_grad"
S
sneaxiy 已提交
69
        self.mean_grad = np.random.random(size).astype("float32")
70 71 72 73 74

        self.lr_name = "lr"
        self.learning_rate = np.array([0.01]).astype("float32")

        self.grad_name = "grad"
S
sneaxiy 已提交
75 76 77 78 79 80 81 82 83 84

        self.is_sparse = is_sparse
        if self.is_sparse:
            self.grad_sr_name = "@selected_rows@"
            self.grad, self.grad_sr = create_selected_rows_and_tensor(
                self.scope, place, size[0], row_num, size[1])
        else:
            self.grad = np.random.random(size).astype("float32")
            grad_tensor = self.scope.var(self.grad_name).get_tensor()
            grad_tensor.set(self.grad, place)
85 86

        self.moment_name = "moment"
S
sneaxiy 已提交
87 88
        self.moment = np.random.uniform(
            low=0, high=1, size=size).astype("float32")
89 90 91

        self.epsilon = epsilon
        self.decay = 0.9
S
sneaxiy 已提交
92
        self.momentum = 0.1
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        self.centered = centered

        self.ms_out = self.decay * self.mean_square + (1 - self.decay
                                                       ) * self.grad * self.grad
        if centered:
            self.mg_out = self.decay * self.mean_grad + (1 - self.decay
                                                         ) * self.grad
            self.moment_out = self.momentum * self.moment + \
                              self.learning_rate * self.grad / np.sqrt(self.ms_out - np.square(self.mg_out) + self.epsilon)
        else:
            self.moment_out = self.momentum * self.moment + \
                              self.learning_rate * self.grad / np.sqrt(self.ms_out + self.epsilon)

        self.param_out = self.param - self.moment_out

        # create and initialize Param Variable
S
sneaxiy 已提交
109 110
        self.param_tensor = self.scope.var(self.param_name).get_tensor()
        self.param_tensor.set(self.param, place)
111

S
sneaxiy 已提交
112 113 114
        self.mean_square_tensor = self.scope.var(
            self.mean_square_name).get_tensor()
        self.mean_square_tensor.set(self.mean_square, place)
115

S
sneaxiy 已提交
116
        lr = self.scope.var(self.lr_name).get_tensor()
117 118
        lr.set(self.learning_rate, place)

S
sneaxiy 已提交
119 120
        self.moment_tensor = self.scope.var(self.moment_name).get_tensor()
        self.moment_tensor.set(self.moment, place)
121

S
sneaxiy 已提交
122 123 124 125
        if self.centered:
            self.mean_grad_tensor = self.scope.var(
                self.mean_grad_name).get_tensor()
            self.mean_grad_tensor.set(self.mean_grad, place)
126

S
sneaxiy 已提交
127 128 129 130 131 132
    def check(self, actual_t, expect_t, place, out_name, atol=1e-5):
        self.assertTrue(
            np.allclose(
                actual_t, expect_t, atol=atol),
            "Output (" + out_name + ") has diff at " + str(place) + "\nExpect "
            + str(expect_t) + "\n" + "But Got" + str(actual_t))
133

S
sneaxiy 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

class TestRmspropOp(TestBase):
    def check_with_place(self,
                         place,
                         is_sparse,
                         centered,
                         size,
                         row_num=None,
                         epsilon=1e-6):
        self.setup(place, is_sparse, centered, size, row_num, epsilon)
        self.run_and_check()

    def run_and_check(self):
        grad_name = self.grad_sr_name if self.is_sparse else self.grad_name

        kwargs = {
            'Param': self.param_name,
            'Grad': grad_name,
            'MeanSquare': self.mean_square_name,
            'Moment': self.moment_name,
            'LearningRate': self.lr_name,
            'ParamOut': self.param_name,
            'MeanSquareOut': self.mean_square_name,
            'MomentOut': self.moment_name,
            'epsilon': self.epsilon,
            'decay': self.decay,
            'momentum': self.momentum,
            'centered': self.centered
        }
163 164

        if self.centered:
S
sneaxiy 已提交
165 166 167 168 169 170 171
            kwargs['MeanGrad'] = self.mean_grad_name
            kwargs['MeanGradOut'] = self.mean_grad_name

        rmsprop_op = Operator('rmsprop', **kwargs)
        atol = 1e-6

        rmsprop_op.run(self.scope, self.place)
172 173

        self.check(
S
sneaxiy 已提交
174 175 176 177 178
            np.array(self.mean_square_tensor),
            self.ms_out,
            self.place,
            self.mean_square_name,
            atol=atol)
179
        self.check(
S
sneaxiy 已提交
180
            np.array(self.moment_tensor),
181
            self.moment_out,
S
sneaxiy 已提交
182
            self.place,
183
            self.moment_name,
S
sneaxiy 已提交
184
            atol=atol)
185
        self.check(
S
sneaxiy 已提交
186
            np.array(self.param_tensor),
187
            self.param_out,
S
sneaxiy 已提交
188
            self.place,
189
            self.param_name,
S
sneaxiy 已提交
190
            atol=atol)
191 192 193

        if self.centered:
            self.check(
S
sneaxiy 已提交
194 195
                np.array(self.mean_grad_tensor), self.mg_out, self.place,
                self.mean_grad_name)
196 197 198 199 200

    def test_rmsprop(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
S
sneaxiy 已提交
201 202

        size = (128, 320)
203
        for place in places:
S
sneaxiy 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
            for centered in [False, True]:
                with fluid.scope_guard(core.Scope()):
                    self.check_with_place(
                        place, is_sparse=False, centered=centered, size=size)

                with fluid.scope_guard(core.Scope()):
                    self.check_with_place(
                        place,
                        is_sparse=True,
                        centered=centered,
                        row_num=512,
                        size=size)

                with fluid.scope_guard(core.Scope()):
                    self.check_with_place(
                        place,
                        is_sparse=True,
                        centered=centered,
                        row_num=60,
                        size=size)
224 225


M
MRXLT 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
class TestRMSPropV2(unittest.TestCase):
    def test_rmsprop_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear = paddle.nn.Linear(13, 5, dtype="float32")
        # This can be any optimizer supported by dygraph.
        adam = paddle.optimizer.RMSProp(
            learning_rate=0.01,
            parameters=linear.parameters(),
            weight_decay=0.01)
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()

    def test_rmsprop(self):
        place = fluid.CPUPlace()
        main = fluid.Program()
        with fluid.program_guard(main):
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_cost = fluid.layers.mean(cost)

            rms_optimizer = paddle.optimizer.RMSProp(learning_rate=0.1)
            rms_optimizer.minimize(avg_cost)

            fetch_list = [avg_cost]
            train_reader = paddle.batch(
                paddle.dataset.uci_housing.train(), batch_size=1)
            feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for data in train_reader():
                exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

    def test_raise_error(self):
        self.assertRaises(ValueError, paddle.optimizer.RMSProp, None)
        self.assertRaises(
            ValueError, paddle.optimizer.RMSProp, learning_rate=0.1, rho=None)
        self.assertRaises(
            ValueError,
            paddle.optimizer.RMSProp,
            learning_rate=0.1,
            epsilon=None)
        self.assertRaises(
            ValueError,
            paddle.optimizer.RMSProp,
            learning_rate=0.1,
            momentum=None)


280 281
if __name__ == "__main__":
    unittest.main()