selected_rows_functor.cc 20.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

M
minqiyang 已提交
15
#include <algorithm>
T
wip  
typhoonzero 已提交
16
#include <set>
Q
Qiao Longfei 已提交
17
#include <unordered_map>
T
wip  
typhoonzero 已提交
18

S
sneaxiy 已提交
19
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/operators/math/selected_rows_functor.h"
21 22 23 24 25

namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
26 27
struct SelectedRowsAdd<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
                  const framework::SelectedRows& input1,
                  const framework::SelectedRows& input2,
                  framework::SelectedRows* output) {
    auto in1_height = input1.height();
    PADDLE_ENFORCE_EQ(in1_height, input2.height());
    output->set_height(in1_height);

    auto& in1_rows = input1.rows();
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, in2_value.numel() / in2_rows.size());
    PADDLE_ENFORCE_EQ(in1_row_numel, out_value->numel() / out_rows.size());

    auto in1_place = input1.place();
    PADDLE_ENFORCE(platform::is_cpu_place(in1_place));
    auto in2_place = input2.place();
    PADDLE_ENFORCE(platform::is_cpu_place(in2_place));
    auto out_place = context.GetPlace();
    PADDLE_ENFORCE(platform::is_cpu_place(out_place));

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();
    memory::Copy(boost::get<platform::CPUPlace>(out_place), out_data,
                 boost::get<platform::CPUPlace>(in1_place), in1_data,
                 in1_value.numel() * sizeof(T));

    auto* in2_data = in2_value.data<T>();
    memory::Copy(boost::get<platform::CPUPlace>(out_place),
                 out_data + in1_value.numel(),
                 boost::get<platform::CPUPlace>(in2_place), in2_data,
                 in2_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
74 75
template struct SelectedRowsAdd<platform::CPUDeviceContext, float>;
template struct SelectedRowsAdd<platform::CPUDeviceContext, double>;
76 77

template <typename T>
Q
QI JUN 已提交
78 79
struct SelectedRowsAddTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
                  const framework::SelectedRows& input1,
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);
    PADDLE_ENFORCE_EQ(in1_height, out_dims[0]);

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2.numel() / in1_height);
    PADDLE_ENFORCE_EQ(in1_row_numel, output->numel() / in1_height);

Q
QI JUN 已提交
95
    SetConstant<platform::CPUDeviceContext, T> functor;
96 97 98 99 100 101 102 103 104 105 106 107 108 109
    functor(context, output, 0.0);

    auto* in1_data = in1_value.data<T>();
    auto* out_data = output->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        out_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
110
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
111 112 113
  }
};

Q
QI JUN 已提交
114 115
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, double>;
Q
QI JUN 已提交
116 117

template <typename T>
Q
QI JUN 已提交
118 119
struct SelectedRowsAddTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132
                  const framework::SelectedRows& input1,
                  const int64_t input2_offset,
                  framework::SelectedRows* input2) {
    auto in1_height = input1.height();
    PADDLE_ENFORCE_EQ(in1_height, input2->height());

    auto& in1_rows = input1.rows();
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
Y
Yu Yang 已提交
133
    in2_rows.Extend(in1_rows.begin(), in1_rows.end());
Q
QI JUN 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

    auto in1_place = input1.place();
    PADDLE_ENFORCE(platform::is_cpu_place(in1_place));
    auto in2_place = input2->place();
    PADDLE_ENFORCE(platform::is_cpu_place(in2_place));

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
    memory::Copy(boost::get<platform::CPUPlace>(in2_place),
                 in2_data + input2_offset,
                 boost::get<platform::CPUPlace>(in1_place), in1_data,
                 in1_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
149 150 151 152
template struct SelectedRowsAddTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int64_t>;
Q
QI JUN 已提交
153

M
minqiyang 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
template <typename T>
struct SelectedRowsSumTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<framework::SelectedRows*>& input1,
                  const std::vector<int64_t>& input2_offsets,
                  framework::SelectedRows* input2) {
    // Ensure all selected rows have the same height
    size_t size = 0u;
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      auto& in_rows = (*iter)->rows();
      size += in_rows.end() - in_rows.begin();
      auto in1_height = (*iter)->height();
      PADDLE_ENFORCE_EQ(in1_height, input2->height());
    }
    // concat rows
    std::vector<int64_t> in2_rows;
    in2_rows.reserve(in2_rows.size() + size);
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      const framework::Vector<int64_t>& in_rows = (*iter)->rows();
      in2_rows.insert(in2_rows.end(), in_rows.begin(), in_rows.end());
    }
    input2->set_rows(in2_rows);

    auto* in2_value = input2->mutable_value();
    auto* in2_data = in2_value->data<T>();
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    size_t offset = 0u;
    for (size_t i = 0u; i != input1.size(); ++i) {
      auto& in_value = input1[i]->value();
      const auto* in_data = in_value.data<T>();
      offset += input2_offsets[i];
      blas.VCOPY(in_value.numel(), in_data, in2_data + offset);
    }
  }
};

template struct SelectedRowsSumTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsSumTo<platform::CPUDeviceContext, double>;

Q
QI JUN 已提交
193
template <typename T>
Q
QI JUN 已提交
194 195
struct SelectedRowsAddToTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
196 197
                  const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
Q
Qiao Longfei 已提交
198
    if (UNLIKELY(input1.rows().size() == 0)) {
199 200 201
      LOG(WARNING) << "input selected rows is empty!";
      return;
    }
Q
QI JUN 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height);

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

Q
QI JUN 已提交
224 225 226 227
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int64_t>;
228

T
typhoonzero 已提交
229 230 231 232 233 234 235 236
// This is a separated namespace for manipulate SelectedRows typed
// data. Like merge duplicated rows, adding two SelectedRows etc.
//
// Another group of functors is called "scatter updates", which means
// use SelectedRows to update a dense tensor with different Ops, like
// add or mul.
namespace scatter {

Q
Qiao Longfei 已提交
237 238 239 240
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
241 242
elementwise_add_to(const DeviceContext& ctx, BlasT<DeviceContext, T>* blas,
                   size_t data_len, const T* in, T* out) {
Q
Qiao Longfei 已提交
243
  blas->AXPY(data_len, 1., in, out);
Q
Qiao Longfei 已提交
244 245 246 247 248 249
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    !std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
250 251
elementwise_add_to(const DeviceContext& ctx, BlasT<DeviceContext, T>* blas,
                   size_t data_len, const T* in, T* out) {
T
Tao Luo 已提交
252
  for (size_t i = 0; i < data_len; i++) {
Q
Qiao Longfei 已提交
253 254
    out[i] += in[i];
  }
T
typhoonzero 已提交
255 256 257 258
}

template <typename T>
struct MergeAdd<platform::CPUDeviceContext, T> {
T
wip  
typhoonzero 已提交
259
  framework::SelectedRows operator()(const platform::CPUDeviceContext& context,
260 261
                                     const framework::SelectedRows& input,
                                     const bool sorted_result = false) {
T
wip  
typhoonzero 已提交
262
    framework::SelectedRows out;
263
    (*this)(context, input, &out, sorted_result);
S
sneaxiy 已提交
264 265 266 267 268
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::SelectedRows& input,
269 270
                  framework::SelectedRows* output,
                  const bool sorted_result = false) {
271 272
    std::vector<const framework::SelectedRows*> inputs;
    inputs.push_back(&input);
273
    (*this)(context, inputs, output, sorted_result);
274
  }
T
typhoonzero 已提交
275

276 277
  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const framework::SelectedRows*>& inputs,
278 279
                  framework::SelectedRows* output,
                  const bool sorted_result = false) {
Q
Qiao Longfei 已提交
280
    if (inputs.size() == 0) {
M
minqiyang 已提交
281
      VLOG(3) << "no input! return";
Q
Qiao Longfei 已提交
282 283 284 285
      return;
    }
    const framework::SelectedRows* has_value_input = nullptr;
    for (auto* in : inputs) {
Q
Qiao Longfei 已提交
286
      if (in->rows().size() > 0) {
Q
Qiao Longfei 已提交
287 288 289 290 291
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
M
minqiyang 已提交
292
      VLOG(3) << "no input has value! just return" << std::endl;
Q
Qiao Longfei 已提交
293 294 295 296
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
297 298
    framework::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
299
    size_t row_num = 0;
300
    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
301
      if (input->rows().size() == 0) {
Q
Qiao Longfei 已提交
302 303
        continue;
      }
304 305 306 307 308
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
                        "all input should have same "
                        "dimension except for the first one");
      PADDLE_ENFORCE_EQ(input_height, input->height(),
                        "all input should have same height");
309
      row_num += input->rows().size();
310 311
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
312

313
    out.set_height(input_height);
T
wip  
typhoonzero 已提交
314
    out.mutable_value()->mutable_data<T>(
T
typhoonzero 已提交
315
        framework::make_ddim(
316
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
T
typhoonzero 已提交
317
        context.GetPlace());
318
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
319

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    if (merged_row_set.size() == row_num && !sorted_result) {
      // no duplicated ids, just concat the result together
      std::vector<int64_t> merge_rows;
      merge_rows.reserve(row_num);
      // concat rows
      for (auto* in : inputs) {
        merge_rows.insert(merge_rows.end(), in->rows().begin(),
                          in->rows().end());
      }
      out.set_rows(merge_rows);
      auto in_place = inputs[0]->place();
      auto out_place = out.place();
      int64_t copied_numel = 0;
      for (auto* in : inputs) {
        auto* in_data = in->value().data<T>();
        auto in_numel = in->value().numel();
        memory::Copy(boost::get<platform::CPUPlace>(out_place),
                     out_data + copied_numel,
                     boost::get<platform::CPUPlace>(in_place), in_data,
                     in_numel * sizeof(T));
        copied_numel += in_numel;
      }
    } else {
      std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                      merged_row_set.end());
T
typhoonzero 已提交
345

346 347 348
      if (sorted_result) {
        std::sort(merge_rows.begin(), merge_rows.end());
      }
T
typhoonzero 已提交
349

350 351 352 353 354 355 356 357
      out.set_rows(merge_rows);

      math::SetConstant<platform::CPUDeviceContext, T> constant_functor;
      constant_functor(context, out.mutable_value(), 0.0);

      std::unordered_map<int64_t, size_t> rows_to_id;
      for (size_t i = 0; i < merge_rows.size(); ++i) {
        rows_to_id[merge_rows[i]] = i;
Q
Qiao Longfei 已提交
358
      }
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

      auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
      for (auto* input : inputs) {
        if (input->rows().size() == 0) {
          continue;
        }
        auto* input_data = input->value().data<T>();
        auto& input_rows = input->rows();

        for (size_t i = 0; i < input_rows.size(); i++) {
          size_t out_i = rows_to_id[input_rows[i]];
          elementwise_add_to<platform::CPUDeviceContext, T>(
              context, &blas, static_cast<size_t>(input_width),
              &input_data[i * input_width], &out_data[out_i * input_width]);
        }
T
typhoonzero 已提交
374 375
      }
    }
T
wip  
typhoonzero 已提交
376 377 378
  }
};

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
template <typename T>
struct MergeAverage<platform::CPUDeviceContext, T> {
  framework::SelectedRows operator()(const platform::CPUDeviceContext& context,
                                     const framework::SelectedRows& input) {
    framework::SelectedRows out;
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::SelectedRows& input,
                  framework::SelectedRows* output) {
    std::vector<const framework::SelectedRows*> inputs;
    inputs.push_back(&input);
    (*this)(context, inputs, output);
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const framework::SelectedRows*>& inputs,
                  framework::SelectedRows* output) {
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
    const framework::SelectedRows* has_value_input = nullptr;
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
    framework::SelectedRows& out = *output;
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
                        "all input should have same "
                        "dimension except for the first one");
      PADDLE_ENFORCE_EQ(input_height, input->height(),
                        "all input should have same height");
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
        framework::make_ddim(
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());
    auto* out_data = out.mutable_value()->data<T>();

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());
    std::sort(merge_rows.begin(), merge_rows.end());

    out.set_rows(merge_rows);

    math::SetConstant<platform::CPUDeviceContext, T> constant_functor;
    constant_functor(context, out.mutable_value(), 0.0);

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();

      for (size_t i = 0; i < input_rows.size(); i++) {
        size_t out_i = rows_to_id[input_rows[i]];
        elementwise_add_to<platform::CPUDeviceContext, T>(
            context, &blas, static_cast<size_t>(input_width),
            &input_data[i * input_width], &out_data[out_i * input_width]);
      }
    }
    size_t input_width_cast = static_cast<size_t>(input_width);
    T count = static_cast<T>(inputs.size());
    for (size_t i = 0; i < merge_rows.size(); i++) {
      for (size_t j = 0; j < input_width_cast; j++) {
        out_data[i * input_width + j] = out_data[i * input_width + j] / count;
      }
    }
  }
};

T
wip  
typhoonzero 已提交
478 479
template struct MergeAdd<platform::CPUDeviceContext, int>;
template struct MergeAdd<platform::CPUDeviceContext, int64_t>;
Q
Qiao Longfei 已提交
480 481
template struct MergeAdd<platform::CPUDeviceContext, float>;
template struct MergeAdd<platform::CPUDeviceContext, double>;
T
wip  
typhoonzero 已提交
482

483 484 485 486 487
template struct MergeAverage<platform::CPUDeviceContext, int>;
template struct MergeAverage<platform::CPUDeviceContext, int64_t>;
template struct MergeAverage<platform::CPUDeviceContext, float>;
template struct MergeAverage<platform::CPUDeviceContext, double>;

T
wip  
typhoonzero 已提交
488 489
template <typename T>
struct UpdateToTensor<platform::CPUDeviceContext, T> {
T
typhoonzero 已提交
490 491 492
  void operator()(const platform::CPUDeviceContext& context,
                  const ScatterOps& op, const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height);

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    // FIXME(typhoonzero): use macro fix the below messy code.
    switch (op) {
      case ScatterOps::ASSIGN:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::ADD:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUB:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] -=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUBBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] -
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
      case ScatterOps::MUL:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] *=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIV:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] /=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIVBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] /
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
    }
T
typhoonzero 已提交
546 547 548 549
  }
};

}  // namespace scatter
550 551 552
}  // namespace math
}  // namespace operators
}  // namespace paddle