interpolate_mkldnn_op.cc 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/operators/interpolate_op.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using framework::DataLayout;
using dnnl::memory;
using dnnl::primitive;
using dnnl::reorder;
using dnnl::stream;
using dnnl::resampling_forward;
using platform::GetMKLDNNFormat;
using platform::to_void_cast;

template <typename T = float>
class InterpolateMKLDNNHandler
33
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::resampling_forward> {
34 35 36
 public:
  InterpolateMKLDNNHandler(const dnnl::algorithm algo,
                           const dnnl::engine engine, platform::Place cpu_place,
37 38 39
                           const Tensor* x, Tensor* z)
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::resampling_forward>(
            engine, cpu_place) {
40 41
    const auto src_x_tz = phi::vectorize(x->dims());
    const auto dst_tz = phi::vectorize(z->dims());
42 43 44 45 46 47
    const auto src_md = dnnl::memory::desc(
        src_x_tz, platform::MKLDNNGetDataType<T>(), x->format());
    const auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType<T>(),
                                     MKLDNNMemoryFormat::any);
    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_inference,
                                            algo, src_md, dst_md);
48 49 50 51 52 53 54 55
  }
};

template <typename T = float>
class InterpolateMKLDNNKernel : public framework::OpKernel<T> {
  std::vector<int> ComputeOutputShape(
      const framework::ExecutionContext& ctx) const {
    const auto* x = ctx.Input<Tensor>("X");
56 57 58 59
    const auto& in_dims = x->dims();

    const framework::DDim in_dhw_dims =
        phi::slice_ddim(in_dims, 2, in_dims.size());
60 61

    std::vector<int> out_dims;
62
    out_dims.reserve(5);
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    if (in_dhw_dims.size() == 1) {
      out_dims.push_back(ctx.Attr<int>("out_w"));
    } else if (in_dhw_dims.size() == 2) {
      out_dims.push_back(ctx.Attr<int>("out_h"));
      out_dims.push_back(ctx.Attr<int>("out_w"));
    } else if (in_dhw_dims.size() == 3) {
      out_dims.push_back(ctx.Attr<int>("out_d"));
      out_dims.push_back(ctx.Attr<int>("out_h"));
      out_dims.push_back(ctx.Attr<int>("out_w"));
    }

    auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
    auto out_size = ctx.Input<Tensor>("OutSize");
    if (list_new_size_tensor.size() > 0) {
      auto new_size = get_new_shape(list_new_size_tensor);
      if (new_size.size() == out_dims.size()) {
        out_dims = new_size;
      }
    } else if (out_size != nullptr) {
      auto out_size_data = get_new_data_from_tensor<int>(out_size);
      if (out_size_data.size() == out_dims.size()) {
        out_dims = out_size_data;
      }
    } else {
87 88
      std::vector<float> scale;
      scale.reserve(3);
89 90 91
      auto scale_tensor = ctx.Input<Tensor>("Scale");
      if (scale_tensor != nullptr) {
        auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
92 93
        scale.resize(3, scale_data[0]);
        std::copy(scale_data.begin(), scale_data.end(), scale.begin());
94
      } else {
95 96 97 98 99 100 101 102
        std::string op_type = ctx.Type();

        if (op_type.find("v2") == std::string::npos) {  // v1
          scale.push_back(ctx.Attr<float>("scale"));
          scale.push_back(scale[0]);
          scale.push_back(scale[0]);
        } else {  // v2
          std::vector<float> scale_attr = ctx.Attr<std::vector<float>>("scale");
103 104 105 106
          if (scale_attr.size() > 0) {
            scale.resize(3, scale_attr[0]);
            std::copy(scale_attr.begin(), scale_attr.end(), scale.begin());
          }
107
        }
108
      }
109 110
      if (scale[0] > 0.0f && scale[1] > 0.0f && scale[2] > 0.0f) {
        int j = 0;
111
        std::vector<int64_t> in_dhw_vec = phi::vectorize(in_dhw_dims);
112 113
        std::transform(
            in_dhw_vec.begin(), in_dhw_vec.end(), out_dims.begin(),
114
            [&](int64_t i) -> int { return static_cast<int>(i * scale[j++]); });
115 116 117 118 119 120 121 122 123
      }
    }

    PADDLE_ENFORCE_GT(std::all_of(out_dims.begin(), out_dims.end(),
                                  [](int i) { return i > 0; }),
                      0, platform::errors::InvalidArgument(
                             "out_d, out_h, out_w of Op(interpolate) "
                             "should be greater than 0."));

124 125
    const std::vector<int64_t> nc_dims = {in_dims[0], in_dims[1]};
    out_dims.insert(out_dims.begin(), nc_dims.begin(), nc_dims.end());
126 127 128 129 130 131 132 133 134 135 136 137
    return out_dims;
  }

 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const auto* x = ctx.Input<Tensor>("X");
    auto* z = ctx.Output<Tensor>("Out");

138 139 140 141
    const auto interp_method = ctx.Attr<std::string>("interp_method");
    const dnnl::algorithm algo = (interp_method == "nearest")
                                     ? dnnl::algorithm::resampling_nearest
                                     : dnnl::algorithm::resampling_linear;
142

143
    const auto out_dims_vec = ComputeOutputShape(ctx);
144
    framework::DDim dim_out = phi::make_ddim(out_dims_vec);
145
    z->Resize(dim_out);
146

147 148
    InterpolateMKLDNNHandler<T> handler(algo, mkldnn_engine, ctx.GetPlace(), x,
                                        z);
149 150 151 152 153 154 155

    auto src_memory_p = handler.AcquireSrcMemory(x);
    auto dst_memory_p = handler.AcquireDstMemory(z);

    auto resampling_prim = handler.AcquireForwardPrimitive();
    const std::unordered_map<int, dnnl::memory> args = {
        {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};
156
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
157

158 159 160 161 162 163 164 165 166 167 168 169 170 171
    resampling_prim->execute(astream, args);
    astream.wait();

    z->set_layout(DataLayout::kMKLDNN);
    z->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(nearest_interp, MKLDNN, ::paddle::platform::CPUPlace,
172 173 174
                   ops::InterpolateMKLDNNKernel<float>,
                   ops::InterpolateMKLDNNKernel<int8_t>,
                   ops::InterpolateMKLDNNKernel<uint8_t>);
175 176
REGISTER_OP_KERNEL(bilinear_interp, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::InterpolateMKLDNNKernel<float>);
177 178

REGISTER_OP_KERNEL(nearest_interp_v2, MKLDNN, ::paddle::platform::CPUPlace,
179
                   ops::InterpolateMKLDNNKernel<float>,
180
                   ops::InterpolateMKLDNNKernel<paddle::platform::bfloat16>,
181 182
                   ops::InterpolateMKLDNNKernel<int8_t>,
                   ops::InterpolateMKLDNNKernel<uint8_t>);
183 184
REGISTER_OP_KERNEL(bilinear_interp_v2, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::InterpolateMKLDNNKernel<float>);