multiary.cc 35.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/infermeta/multiary.h"
16
#include <vector>
H
hong 已提交
17
#include "paddle/phi/common/layout.h"
18
#include "paddle/phi/common/scalar.h"
H
hong 已提交
19
#include "paddle/phi/core/infermeta_utils.h"
20
#include "paddle/phi/core/meta_tensor.h"
21 22
#include "paddle/phi/kernels/funcs/concat_funcs.h"
namespace phi {
23

24 25 26 27 28 29 30 31 32
std::vector<DDim> GetMetaTensorsDim(const std::vector<MetaTensor*>& tensors) {
  std::vector<DDim> dims;
  dims.reserve(tensors.size());
  for (const MetaTensor* tensor : tensors) {
    dims.emplace_back(tensor->dims());
  }
  return dims;
}

F
From00 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
void AdadeltaInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& avg_squared_grad,
                       const MetaTensor& avg_squared_update,
                       float rho,
                       float epsilon,
                       MetaTensor* param_out,
                       MetaTensor* avg_squared_grad_out,
                       MetaTensor* avg_squared_update_out) {
  auto param_dims = param.dims();
  PADDLE_ENFORCE_EQ(
      param_dims,
      grad.dims(),
      errors::InvalidArgument(
          "Param and grad input of AdadeltaOp should have same dimension."));
  PADDLE_ENFORCE_EQ(
      param_dims,
      avg_squared_grad.dims(),
      errors::InvalidArgument("Param and AvgSquaredGrad input of AdadeltaOp "
                              "should have same dimension"));
  PADDLE_ENFORCE_EQ(
      param_dims,
      avg_squared_update.dims(),
      errors::InvalidArgument("Param and AvgSquaredUpdate input of AdadeltaOp "
                              "should have same dimension"));

  param_out->set_dims(param_dims);
  param_out->set_dtype(param.dtype());

  avg_squared_grad_out->set_dims(param_dims);
  avg_squared_grad_out->set_dtype(avg_squared_grad.dtype());

  avg_squared_update_out->set_dims(param_dims);
  avg_squared_update_out->set_dtype(avg_squared_update.dtype());
}

void AdamaxInferMeta(const MetaTensor& param,
                     const MetaTensor& grad,
                     const MetaTensor& learning_rate,
                     const MetaTensor& moment,
                     const MetaTensor& inf_norm,
                     const MetaTensor& beta1_pow,
                     float beta1,
                     float beta2,
                     float epsilon,
                     MetaTensor* param_out,
                     MetaTensor* moment_out,
                     MetaTensor* inf_norm_out) {
  auto lr_dims = learning_rate.dims();
  PADDLE_ENFORCE_NE(
      product(lr_dims),
      0,
      errors::InvalidArgument("Maybe the Input variable LearningRate has not "
                              "been initialized. You may need to confirm "
                              "if you put exe.run(startup_program) "
                              "after optimizer.minimize function."));
  PADDLE_ENFORCE_EQ(
      product(lr_dims),
      1,
      errors::InvalidArgument("Learning rate should have 1 dimension"));
  auto beta1_pow_dims = beta1_pow.dims();
  PADDLE_ENFORCE_EQ(product(beta1_pow_dims),
                    1,
                    errors::InvalidArgument(
                        "Beta1 power accumulator should have 1 dimension"));
  auto param_dims = param.dims();
  PADDLE_ENFORCE_EQ(
      param_dims,
      grad.dims(),
      errors::InvalidArgument(
          "Param and Grad input of AdamaxOp should have same dimension"));
  PADDLE_ENFORCE_EQ(
      param_dims,
      moment.dims(),
      errors::InvalidArgument(
          "Param and Moment input of AdamaxOp should have same dimension"));
  PADDLE_ENFORCE_EQ(
      param_dims,
      inf_norm.dims(),
      errors::InvalidArgument(
          "Param and InfNorm input of AdamaxOp should have same dimension"));

  param_out->set_dims(param_dims);
  param_out->set_dtype(param.dtype());

  moment_out->set_dims(param_dims);
  moment_out->set_dtype(moment.dtype());

  inf_norm_out->set_dims(param_dims);
  inf_norm_out->set_dtype(inf_norm.dtype());
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
void AucInferMeta(const MetaTensor& input,
                  const MetaTensor& label,
                  const MetaTensor& stat_pos,
                  const MetaTensor& stat_neg,
                  const std::string& curve,
                  int num_thresholds,
                  int slide_steps,
                  MetaTensor* auc,
                  MetaTensor* stat_pos_out,
                  MetaTensor* stat_neg_out,
                  MetaConfig config) {
  auto predict_dims = input.dims();
  auto label_dims = label.dims();
  PADDLE_ENFORCE_GE(
      predict_dims.size(),
      2,
      phi::errors::InvalidArgument(
          "The Input(Predict) has not been initialized properly. The "
          "shape of Input(Predict) = [%s], the shape size must be "
          "greater_equal 2.",
          predict_dims));
  auto predict_width = predict_dims[1];
  PADDLE_ENFORCE_NE(
      phi::product(predict_dims),
      0,
      phi::errors::InvalidArgument(
          "The Input(Predict) has not been initialized properly. The "
          "shape of Input(Predict) = [%s], the shape can not involes 0.",
          predict_dims));
  PADDLE_ENFORCE_NE(
      phi::product(label_dims),
      0,
      phi::errors::InvalidArgument(
          "The Input(Label) has not been initialized properly. The "
          "shape of Input(Label) = [%s], the shape can not involes 0.",
          label_dims));
  if (config.is_runtime) {
    PADDLE_ENFORCE_LE(
        predict_width,
        2,
        phi::errors::InvalidArgument("Only support binary classification,"
                                     "prediction dims[1] should be 1 or 2"));
  }
  auto predict_height = input.dims()[0];
  auto label_height = label.dims()[0];

  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(
        predict_height,
        label_height,
        phi::errors::InvalidArgument("Out and Label should have same height."));
  }

  int num_pred_buckets = num_thresholds + 1;

  PADDLE_ENFORCE_GE(
      num_pred_buckets,
      1,
      phi::errors::InvalidArgument("num_thresholds must larger than 1"));
  PADDLE_ENFORCE_GE(
      slide_steps,
      0,
      phi::errors::InvalidArgument("slide_steps must be natural number"));

  auc->set_dims({1});
  auc->set_dtype(DataType::INT64);

  if (slide_steps) {
    stat_pos_out->set_dims({(1 + slide_steps) * num_pred_buckets + 1});
    stat_pos_out->set_dtype(DataType::INT64);
    stat_neg_out->set_dims({(1 + slide_steps) * num_pred_buckets + 1});
    stat_neg_out->set_dtype(DataType::INT64);
  } else {
    stat_pos_out->set_dims({1, num_pred_buckets});
    stat_pos_out->set_dtype(DataType::INT64);
    stat_neg_out->set_dims({1, num_pred_buckets});
    stat_neg_out->set_dtype(DataType::INT64);
  }
}

H
hong 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
void BatchNormInferMeta(const MetaTensor& x,
                        const MetaTensor& scale,
                        const MetaTensor& bias,
                        const MetaTensor& mean,
                        const MetaTensor& variance,
                        float momentum,
                        float epsilon,
                        const std::string& data_layout_str,
                        bool is_test,
                        bool use_global_stats,
                        bool trainable_statistics,
                        bool fuse_with_relu,
                        MetaTensor* y,
                        MetaTensor* mean_out,
                        MetaTensor* variance_out,
                        MetaTensor* saved_mean,
                        MetaTensor* saved_variance,
                        MetaTensor* reserve_space,
                        MetaConfig config) {
  const auto x_dims = x.dims();
  for (int i = 0; i < x_dims.size(); i++) {
    PADDLE_ENFORCE_EQ(
        (x_dims[i] == -1) || (x_dims[i] > 0),
        true,
        phi::errors::InvalidArgument(
            "Each dimension of input tensor is expected to be -1 or a "
            "positive number, but recieved %d. Input's shape is [%s].",
            x_dims[i],
            x_dims));
  }

  const DataLayout data_layout =
      paddle::framework::StringToDataLayout(data_layout_str);

  PADDLE_ENFORCE_GE(
      x_dims.size(),
      2,
      phi::errors::InvalidArgument(
          "ShapeError: the dimension of input "
          "X must greater than or equal to 2. But received: the shape of input "
          "X = [%s], the dimension of input X =[%d]",
          x_dims,
          x_dims.size()));
  PADDLE_ENFORCE_LE(
      x_dims.size(),
      5,
      phi::errors::InvalidArgument(
          "ShapeError: the dimension of input X "
          "must smaller than or equal to 5. But received: the shape of input X "
          "= [%s], the dimension of input X = [%d]",
          x_dims,
          x_dims.size()));

  const int64_t C = ((config.is_run_mkldnn_kernel == true) ||
                             (data_layout == DataLayout::kNCHW)
                         ? x_dims[1]
                         : x_dims[x_dims.size() - 1]);
  auto scale_dim = scale.dims();
  auto bias_dim = bias.dims();

  PADDLE_ENFORCE_EQ(
      scale_dim.size(),
      1UL,
      phi::errors::InvalidArgument(
          "ShapeError: the dimension of scale must equal to 1."
          "But received: the shape of scale is [%s], the dimension "
          "of scale is [%d]",
          scale_dim,
          scale_dim.size()));
  PADDLE_ENFORCE_EQ(bias_dim.size(),
                    1UL,
                    phi::errors::InvalidArgument(
                        "ShapeError: the dimension of bias must equal to 1."
                        "But received: the shape of bias is [%s],the dimension "
                        "of bias is [%d]",
                        bias_dim,
                        bias_dim.size()));

  bool check = true;
  if ((!config.is_runtime) &&
      (phi::product(scale_dim) <= 0 || phi::product(bias_dim) <= 0)) {
    check = false;
  }

  if (check) {
    PADDLE_ENFORCE_EQ(scale_dim[0],
                      C,
                      phi::errors::InvalidArgument(
                          "ShapeError: the shape of scale must equal to [%d]"
                          "But received: the shape of scale is [%d]",
                          C,
                          scale_dim[0]));
    PADDLE_ENFORCE_EQ(bias_dim[0],
                      C,
                      phi::errors::InvalidArgument(
                          "ShapeError: the shape of bias must equal to [%d]"
                          "But received: the shape of bias is [%d]",
                          C,
                          bias_dim[0]));
  }
  y->set_dims(x_dims);
  mean_out->set_dims({C});
  variance_out->set_dims({C});
308 309 310 311 312 313
  if (saved_mean) {
    saved_mean->set_dims({C});
  }
  if (saved_variance) {
    saved_variance->set_dims({C});
  }
H
hong 已提交
314 315 316
  y->share_lod(x);
}

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
void BatchNormInferInferMeta(const MetaTensor& x,
                             const MetaTensor& scale,
                             const MetaTensor& bias,
                             const MetaTensor& mean,
                             const MetaTensor& variance,
                             float momentum,
                             float epsilon,
                             const std::string& data_layout,
                             MetaTensor* y,
                             MetaTensor* mean_out,
                             MetaTensor* variance_out,
                             MetaConfig config) {
  BatchNormInferMeta(x,
                     scale,
                     bias,
                     mean,
                     variance,
                     momentum,
                     epsilon,
                     data_layout,
                     /*is_test=*/true,
                     /*use_global_stats=*/false,
                     /*trainable_statistics=*/false,
                     /*fuse_with_relu=*/false,
                     y,
                     mean_out,
                     variance_out,
                     /*saved_mean=*/nullptr,
                     /*saved_variance=*/nullptr,
                     /*reserve_space=*/nullptr,
                     config);
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
void BilinearTensorProductInferMeta(const MetaTensor& x,
                                    const MetaTensor& y,
                                    const MetaTensor& weight,
                                    paddle::optional<const MetaTensor&> bias,
                                    MetaTensor* out,
                                    MetaConfig config) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  auto weight_dims = weight.dims();

  PADDLE_ENFORCE_EQ(
      x_dims.size(),
      2UL,
      errors::InvalidArgument("The input(X) must be a 2D Tensor."));
  PADDLE_ENFORCE_EQ(
      y_dims.size(),
      2UL,
      errors::InvalidArgument("The input(Y) must be a 2D Tensor."));
  PADDLE_ENFORCE_EQ(
      weight_dims.size(),
      3UL,
      errors::InvalidArgument(
          "Expected the input(Weight) is a 3D tensor. But received %dD tensor.",
          weight_dims.size()));
  if (config.is_runtime || (x_dims[0] > 0 && y_dims[0] > 0)) {
    PADDLE_ENFORCE_EQ(x_dims[0],
                      y_dims[0],
                      errors::InvalidArgument(
                          "The first dimension(batch_size) of input(X) must be "
                          "equal to the first dimension of the input(Y)."));
  }
  PADDLE_ENFORCE_EQ(x_dims[1],
                    weight_dims[1],
                    errors::InvalidArgument(
                        "The second dimension of input(X) must be equal to "
                        "the second dimension of the input(Weight)."));
  PADDLE_ENFORCE_EQ(y_dims[1],
                    weight_dims[2],
                    errors::InvalidArgument(
                        "The second dimension of input(Y) must be equal to "
                        "the third dimension of the input(Weight)."));

  if (bias.get_ptr()) {
    auto bias_dims = bias->dims();
    PADDLE_ENFORCE_EQ(bias_dims.size(),
                      2UL,
                      errors::InvalidArgument(
                          "The Input(Bias) must be a 2-D tensor with "
                          "the 2nd dimension fixed to 1 (a row vector)."));
    PADDLE_ENFORCE_EQ(bias_dims[0],
                      1UL,
                      errors::InvalidArgument(
                          "The Input(Bias) must be a 2-D tensor with "
                          "the 2nd dimension fixed to 1 (a row vector)."));
    PADDLE_ENFORCE_EQ(bias_dims[1],
                      weight_dims[0],
                      errors::InvalidArgument(
                          "The second dimension of input(Bias) must be equal "
                          "to the first dimension of the input(Weight)."));
  }

  out->set_dims({x_dims[0], weight_dims[0]});
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
void BroadcastTensorsInferMeta(const std::vector<MetaTensor*>& x,
                               std::vector<MetaTensor*> out) {
  int target_rank = 0;
  const auto& input_dims = GetMetaTensorsDim(x);

  // 1. Find Output rank = max(Inputs rank)
  for (const auto& input_ddim : input_dims) {
    target_rank = std::max(target_rank, input_ddim.size());
  }

  PADDLE_ENFORCE_GT(target_rank,
                    0,
                    errors::InvalidArgument("BroadcastTensorsOp requires at "
                                            "least one input tensor to have "
                                            "rank greater than zero"));

  std::vector<int64_t> target_dims(target_rank, 0);
  // 2. Output dim(axis=x) = max(Inputs dim(axis=x))
  for (int index = 0; index < target_rank; index++) {
    // Loop axes in reverse order,
    // For each axis, take the maximum as target size
    // Fill size = 1 if shape vector exhausts
    int target_dim_size = 1;
    for (const auto& input_ddim : input_dims) {
      // Reversed order
      int axis = static_cast<int>(input_ddim.size()) - index - 1;
      int dim_size = 1;
      if (axis >= 0) {
        dim_size = input_ddim[axis];
      }

      if (target_dim_size != 1 && dim_size != 1 &&
          target_dim_size != dim_size) {
        PADDLE_THROW(errors::InvalidArgument(
            "BroadcastTensorsOp inputs does not satisfy bcast semantics, "
            "please check axis = %d in reverse order",
            index));
      }

      // We performed bcast semantics check at python level
      // So input tensors should all have legal shape
      target_dim_size = std::max(target_dim_size, dim_size);
    }
    target_dims[target_rank - index - 1] = target_dim_size;
  }

  // 3. Set Output Dim
  for (size_t i = 0; i < out.size(); i++) {
    out[i]->set_dims(phi::make_ddim(target_dims));
    out[i]->share_lod(*(x[i]));
    out[i]->set_dtype(x[i]->dtype());
  }
}

470
void ConcatInferMeta(const std::vector<MetaTensor*>& x,
471 472 473 474 475
                     const Scalar& axis_scalar,
                     MetaTensor* out,
                     MetaConfig config) {
  PADDLE_ENFORCE_GE(x.size(),
                    0UL,
476
                    phi::errors::InvalidArgument(
477 478
                        "The size of input meta vector should be greater"
                        "than 0."));
479 480 481 482 483 484 485 486 487
  if (axis_scalar.FromTensor()) {
    auto out_dims =
        phi::make_ddim(std::vector<int>(x.at(0)->dims().size(), -1));
    out->set_dims(out_dims);
    out->set_dtype(x.at(0)->dtype());
    out->set_layout(x.at(0)->layout());
    out->share_lod(*x.at(0));
    return;
  }
488 489 490

  int axis = axis_scalar.to<int>();
  // 1. calculate axis
491
  int rank = x.at(0)->dims().size();
492 493 494
  PADDLE_ENFORCE_EQ(
      axis >= -rank && axis < rank,
      true,
495
      phi::errors::InvalidArgument(
496 497 498 499 500 501 502 503 504
          "The axis is expected to be in range of [%d, %d), but got %d",
          -rank,
          rank,
          axis));
  if (axis < 0) {
    axis = axis + rank;
  }

  // 2. calculate out dims
505
  std::vector<phi::DDim> x_dims;
506 507 508
  x_dims.reserve(x.size());
  for (const auto* x_t : x) {
    x_dims.emplace_back(x_t->dims());
509
  }
510 511
  phi::DDim out_dim =
      phi::funcs::ComputeAndCheckShape(config.is_runtime, x_dims, axis);
512

513
  out->set_dims(out_dim);
514 515 516
  out->set_dtype(x.at(0)->dtype());
  out->set_layout(x.at(0)->layout());
  out->share_lod(*x.at(0));
517 518
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
inline int ConvOutputSize(
    int input_size, int filter_size, int dilation, int padding, int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
  PADDLE_ENFORCE_GT(
      output_size,
      0,
      phi::errors::InvalidArgument(
          "The output's size is expected to be greater than 0. "
          "But recieved: output's size is %d. The output's size is computed by "
          "((input_size + 2 * padding - (dilation * (filter_size - 1) + 1)) / "
          "stride + 1), where input_size is %d, padding is %d, "
          "filter_size is %d, dilation is %d, stride is %d.",
          output_size,
          input_size,
          padding,
          filter_size,
          dilation,
          stride));

  return output_size;
}

void DeformableConvInferMeta(const MetaTensor& x,
                             const MetaTensor& offset,
                             const MetaTensor& filter,
                             paddle::optional<const MetaTensor&> mask,
                             const std::vector<int>& strides,
                             const std::vector<int>& paddings,
                             const std::vector<int>& dilations,
                             int deformable_groups,
                             int groups,
                             int im2col_step,
                             MetaTensor* out,
                             MetaConfig config) {
  auto in_dims = x.dims();
  auto offset_dims = offset.dims();
  auto filter_dims = filter.dims();

  PADDLE_ENFORCE_EQ(
      in_dims.size(),
      4,
      phi::errors::InvalidArgument("Conv input should be 4-D tensor, get %u",
                                   in_dims.size()));
  PADDLE_ENFORCE_EQ(in_dims.size(),
                    filter_dims.size(),
                    phi::errors::InvalidArgument(
                        "Conv input dimension and filter dimension should be "
                        "the same. The difference is [%d]: [%d]",
                        in_dims.size(),
                        filter_dims.size()));
  PADDLE_ENFORCE_EQ(in_dims.size() - strides.size(),
                    2U,
                    phi::errors::InvalidArgument(
                        "Conv input dimension and strides "
                        "dimension should be consistent. But received input "
                        "dimension:[%d], strides dimension:[%d]",
                        in_dims.size(),
                        strides.size()));
  PADDLE_ENFORCE_EQ(paddings.size(),
                    strides.size(),
                    phi::errors::InvalidArgument(
                        "Conv paddings dimension and Conv strides dimension "
                        "should be the same. The difference is [%d]: [%d]",
                        paddings.size(),
                        strides.size()));

  PADDLE_ENFORCE_EQ(
      in_dims[1],
      filter_dims[1] * groups,
      phi::errors::InvalidArgument(
          "The number of input channels should be equal to filter "
          "channels * groups. The difference is [%d]: [%d]",
          in_dims[1],
          filter_dims[1] * groups));
  PADDLE_ENFORCE_EQ(
      filter_dims[0] % groups,
      0,
      phi::errors::InvalidArgument(
          "The number of output channels should be divided by groups. But "
          "received output channels:[%d], groups:[%d]",
          filter_dims[0],
          groups));
  PADDLE_ENFORCE_EQ(
      filter_dims[0] % deformable_groups,
      0,
      phi::errors::InvalidArgument(
          "The number of output channels should be "
          "divided by deformable groups. The difference is [%d]: [%d]",
          filter_dims[0] % groups,
          0));

  if (in_dims[0] > im2col_step) {
    PADDLE_ENFORCE_EQ(
        in_dims[0] % im2col_step,
        0U,
        phi::errors::InvalidArgument(
            "Input batchsize must be smaller than or divide im2col_step. But "
            "received Input batchsize:[%d], im2col_step:[%d]",
            in_dims[0],
            im2col_step));
  }

  for (size_t i = 0; i < strides.size(); ++i) {
    PADDLE_ENFORCE_GT(
        strides[i],
        0U,
        phi::errors::InvalidArgument("stride %d size incorrect", i));
  }
  for (size_t i = 0; i < dilations.size(); ++i) {
    PADDLE_ENFORCE_GT(
        dilations[i],
        0U,
        phi::errors::InvalidArgument("dilation %d size incorrect", i));
  }

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
  for (size_t i = 0; i < strides.size(); ++i) {
    if (!config.is_runtime &&
        (in_dims[i + 2] <= 0 || filter_dims[i + 2] <= 0)) {
      output_shape.push_back(-1);
    } else {
      output_shape.push_back(ConvOutputSize(in_dims[i + 2],
                                            filter_dims[i + 2],
                                            dilations[i],
                                            paddings[i],
                                            strides[i]));
    }
  }

  PADDLE_ENFORCE_EQ(
      output_shape[1] % deformable_groups,
      0U,
      phi::errors::InvalidArgument(
          "output num_filter must divide deformable group size. But received "
          "output num_filter:[%d], deformable group size:[%d]",
          output_shape[1],
          deformable_groups));

  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(output_shape[2],
                      offset_dims[2],
                      phi::errors::InvalidArgument(
                          "output height must equal to offset map height. "
                          "The difference is [%d]: [%d]",
                          output_shape[2],
                          offset_dims[2]));
    PADDLE_ENFORCE_EQ(output_shape[3],
                      offset_dims[3],
                      phi::errors::InvalidArgument(
                          "output width must equal to offset map width. The "
                          "difference is [%d]: [%d]",
                          output_shape[3],
                          offset_dims[3]));

    PADDLE_ENFORCE_EQ(offset_dims[1] % (filter_dims[2] * filter_dims[3]),
                      0U,
                      phi::errors::InvalidArgument(
                          "offset filter must divide deformable group size. "
                          "But received [%d]: [%d]",
                          offset_dims[1],
                          filter_dims[2] * filter_dims[3]));
    PADDLE_ENFORCE_EQ(
        offset_dims[1] / (2 * filter_dims[2] * filter_dims[3]),
        deformable_groups,
        phi::errors::InvalidArgument(
            "offset filter must divide deformable group size. But received "
            "[%d]: [%d]",
            offset_dims[1] / (2 * filter_dims[2] * filter_dims[3]),
            deformable_groups));

    if (mask) {
      auto mask_dims = mask->dims();
      PADDLE_ENFORCE_EQ(output_shape[2],
                        mask_dims[2],
                        phi::errors::InvalidArgument(
                            "output height must equal to mask map height. The "
                            "difference is [%d] vs [%d]",
                            output_shape[2],
                            mask_dims[2]));
      PADDLE_ENFORCE_EQ(output_shape[3],
                        mask_dims[3],
                        phi::errors::InvalidArgument(
                            "output width must equal to mask map width. The "
                            "difference is [%d] vs [%d]",
                            output_shape[3],
                            mask_dims[3]));

      PADDLE_ENFORCE_EQ(mask_dims[1] % (filter_dims[2] * filter_dims[3]),
                        0U,
                        phi::errors::InvalidArgument(
                            "mask filter must divide deformable group size. "
                            "But received [%d]: [%d]",
                            mask_dims[1],
                            filter_dims[2] * filter_dims[3]));
      PADDLE_ENFORCE_EQ(mask_dims[1] / (filter_dims[2] * filter_dims[3]),
                        deformable_groups,
                        phi::errors::InvalidArgument(
                            "mask filter must divide deformable group size. "
                            "But received [%d]: [%d]",
                            mask_dims[1] / (filter_dims[2] * filter_dims[3]),
                            deformable_groups));
    }
  }

  out->set_dims(phi::make_ddim(output_shape));
  out->set_dtype(x.dtype());
}

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
void HierarchicalSigmoidInferMeta(const MetaTensor& x,
                                  const MetaTensor& w,
                                  const MetaTensor& label,
                                  paddle::optional<const MetaTensor&> path,
                                  paddle::optional<const MetaTensor&> code,
                                  paddle::optional<const MetaTensor&> bias,
                                  int num_classes,
                                  bool remote_prefetch,
                                  int trainer_id,
                                  const std::vector<int64_t>& height_sections,
                                  const std::vector<std::string>& epmap,
                                  const std::vector<std::string>& table_names,
                                  bool is_sparse,
                                  MetaTensor* out,
                                  MetaTensor* pre_out,
                                  MetaTensor* w_out) {
  const int64_t input_dims = x.dims()[0];
  const int64_t label_dims = label.dims()[0];
  PADDLE_ENFORCE_EQ(input_dims,
                    label_dims,
                    phi::errors::InvalidArgument(
                        "The first dimension of "
                        "input and label is expected to be the same. "
                        "But received input's first dimension is %d; "
                        "label's first dimension is %d.",
                        input_dims,
                        label_dims));

  std::vector<int64_t> output_shape({input_dims, 1});
  out->set_dims(phi::make_ddim(output_shape));
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
void MultiDotInferMeta(const std::vector<MetaTensor*>& x, MetaTensor* out) {
  auto inputs_dims = GetMetaTensorsDim(x);

  const size_t inputs_num = inputs_dims.size();
  PADDLE_ENFORCE_GT(
      inputs_num,
      static_cast<size_t>(1),
      phi::errors::InvalidArgument(
          "The number of input tensors in multi_dot op should > 1."));

  const size_t n = inputs_dims.size();
  auto first_dim = inputs_dims[0];

  bool is_vector = false;
  phi::DDim out_dim;

  PADDLE_ENFORCE_LT(
      first_dim.size(),
      static_cast<size_t>(3),
      phi::errors::InvalidArgument(
          "multi_dot: the first input tensor must be 1D or 2D but got[%d]!",
          static_cast<int>(first_dim.size())));

  // If the first tensor is 1D of size n view it as a row vector (1, n)
  if (first_dim.size() == 1) {
    first_dim = phi::make_ddim({1, static_cast<int>(first_dim[0])});
    is_vector = true;
  }

  auto last_dim = inputs_dims[n - 1];
  PADDLE_ENFORCE_LT(
      last_dim.size(),
      static_cast<size_t>(3),
      phi::errors::InvalidArgument(
          "the last input tensor of multi_dot must be 1D or 2D but got[%d]!",
          static_cast<int>(first_dim.size())));

  // If the last tensor is 1D of size n view it as a column vector (n, 1)
  if (last_dim.size() == 1) {
    last_dim = phi::make_ddim({static_cast<int>(last_dim[0]), 1});
    out_dim = is_vector ? phi::make_ddim({1}) : phi::make_ddim({first_dim[0]});
  } else {
    out_dim = is_vector ? phi::make_ddim({last_dim[1]})
                        : phi::make_ddim({first_dim[0], last_dim[1]});
  }

  auto width = first_dim[1];
  for (size_t i = 1; i < n - 1; i++) {
    PADDLE_ENFORCE_EQ(inputs_dims[i].size(),
                      static_cast<size_t>(2),
                      phi::errors::InvalidArgument(
                          "the input tensor of multi_dot op must be 2D."));

    const auto& tmp_dim = inputs_dims[i];
    PADDLE_ENFORCE_EQ(
        tmp_dim[0],
        width,
        phi::errors::InvalidArgument(
            "the input matrix does not meet the multiplication requirements."));
    width = tmp_dim[1];
  }

  PADDLE_ENFORCE_EQ(
      last_dim[0],
      width,
      phi::errors::InvalidArgument(
          "the input matrix does not meet the multiplication requirements."));

  out->set_dims(out_dim);
  out->set_dtype(x.at(0)->dtype());
  out->share_lod(*x.at(0));
}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
void MultiplexInferMeta(const std::vector<MetaTensor*>& ins,
                        const MetaTensor& ids,
                        MetaTensor* out) {
  PADDLE_ENFORCE_NE(
      ins.empty(),
      true,
      phi::errors::InvalidArgument("MultiInput(X) shouldn't be empty."));
  auto ids_dim = ids.dims();
  PADDLE_ENFORCE_EQ(ids_dim.size(),
                    2,
                    phi::errors::PreconditionNotMet(
                        "The index tensor must be a vector with 2 dimensions"));
  PADDLE_ENFORCE_EQ(
      ids_dim[1],
      1,
      phi::errors::PreconditionNotMet(
          "The index tensor must be a vector with batchSize x 1."));

  auto ins_dims = GetMetaTensorsDim(ins);
  auto num_ins = ins_dims.size();
  PADDLE_ENFORCE_GT(
      num_ins,
      1,
      phi::errors::InvalidArgument("multiplex operator should have more than "
                                   "one candidate input tensors."));

  auto in_dim = ins_dims[0];
  PADDLE_ENFORCE_GE(
      in_dim.size(),
      2,
      phi::errors::InvalidArgument(
          "The rank of candidate tensors must be not less than 2."));
  for (size_t i = 1; i < num_ins; i++) {
    auto dim = ins_dims[i];
    PADDLE_ENFORCE_EQ(
        in_dim,
        dim,
        phi::errors::PreconditionNotMet(
            "All the candidate tensors must have the same size."));
  }
  out->set_dims(in_dim);
  out->set_dtype(ins[0]->dtype());
}

F
From00 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
void PsroiPoolInferMeta(const MetaTensor& x,
                        const MetaTensor& rois,
                        paddle::optional<const MetaTensor&> rois_num,
                        int pooled_height,
                        int pooled_width,
                        int output_channels,
                        float spatial_scale,
                        MetaTensor* out) {
  auto input_dims = x.dims();
  auto rois_dims = rois.dims();

  PADDLE_ENFORCE_EQ(
      input_dims.size(),
      4,
      errors::InvalidArgument("The format of input tensor is NCHW"));
  PADDLE_ENFORCE_EQ(rois_dims.size(),
                    2,
                    errors::InvalidArgument(
                        "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
                        "given as [(x1, y1, x2, y2), ...]"));
  PADDLE_ENFORCE_EQ(rois_dims[1],
                    4,
                    errors::InvalidArgument(
                        "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
                        "given as [(x1, y1, x2, y2), ...]"));
  if (rois_num.get_ptr()) {
    auto rois_num_dims = rois_num->dims();
    PADDLE_ENFORCE_EQ(
        rois_num_dims.size(),
        1,
        errors::InvalidArgument("The second dimension of RoisNum should "
                                "be 1, but received dimension is %d",
                                rois_num_dims.size()));
  }

  PADDLE_ENFORCE_EQ(
      input_dims[1],
      output_channels * pooled_height * pooled_width,
      errors::InvalidArgument(
          "the channel of X(%d) "
          "should be equal to the product of "
          "output_channels(%d), pooled_height(%d) and pooled_width(%d)",
          input_dims[1],
          output_channels,
          pooled_height,
          pooled_width));

  PADDLE_ENFORCE_GT(pooled_height,
                    0,
                    errors::InvalidArgument(
                        "The pooled output height must be greater than 0"));
  PADDLE_ENFORCE_GT(pooled_width,
                    0,
                    errors::InvalidArgument(
                        "The pooled output width must be greater than 0"));
  PADDLE_ENFORCE_GT(output_channels,
                    1,
                    errors::InvalidArgument(
                        "The pooled output channels must greater than 1"));
  PADDLE_ENFORCE_GT(
      spatial_scale,
      0.0f,
      errors::InvalidArgument("The spatial scale must greater than 0."));

  auto out_dims = input_dims;
  out_dims[0] = rois_dims[0];
  out_dims[1] =
      output_channels;  // input_dims[1] / (pooled_height * pooled_width);
  out_dims[2] = pooled_height;
  out_dims[3] = pooled_width;

  out->set_dims(out_dims);
  out->set_dtype(x.dtype());
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
void WhereInferMeta(const MetaTensor& condition,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    MetaTensor* out) {
  auto cond_dims = condition.dims();
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  PADDLE_ENFORCE_EQ(
      cond_dims,
      x_dims,
      phi::errors::InvalidArgument(
          "The dims of Inputs(Condition) and Inputs(X) should be same. "
          "But received Condition's shape is [%s], X's shape is [%s]",
          cond_dims,
          x_dims));
  PADDLE_ENFORCE_EQ(x_dims,
                    y_dims,
                    phi::errors::InvalidArgument(
                        "The dims of Inputs(X) and Inputs(Y) should be same. "
                        "But received X's shape is [%s], Y's shape is [%s]",
                        x_dims,
                        y_dims));
  out->share_meta(x);
}

979
}  // namespace phi
H
hong 已提交
980 981

PD_REGISTER_INFER_META_FN(batch_norm, phi::BatchNormInferMeta);
982
PD_REGISTER_INFER_META_FN(batch_norm_infer, phi::BatchNormInferInferMeta);