test_learning_rate_scheduler.py 20.8 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import copy
18
import math
19
import numpy as np
20
import unittest
21

22
import paddle
23
import paddle.fluid as fluid
24
import paddle.fluid.layers as layers
25
import paddle.fluid.framework as framework
Q
QI JUN 已提交
26
import paddle.fluid.core as core
Q
Qiao Longfei 已提交
27 28 29 30 31 32 33


def exponential_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False):
Y
Yu Yang 已提交
34
    exponent = global_step / decay_steps
Q
Qiao Longfei 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    if staircase:
        exponent = math.floor(exponent)
    return learning_rate * decay_rate**exponent


def natural_exp_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False):
    exponent = float(global_step) / float(decay_steps)
    if staircase:
        exponent = math.floor(exponent)
    return learning_rate * math.exp(-1 * decay_rate * exponent)


def inverse_time_decay(learning_rate,
                       global_step,
                       decay_steps,
                       decay_rate,
                       staircase=False):
    temp = float(global_step) / float(decay_steps)
    if staircase:
        temp = math.floor(temp)
    return learning_rate / (1 + decay_rate * temp)


62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
def polynomial_decay(learning_rate,
                     global_step,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
    if cycle:
        div = math.ceil(global_step / float(decay_steps))
        if div == 0:
            div = 1
        decay_steps = decay_steps * div
    else:
        global_step = min(global_step, decay_steps)
    return (learning_rate - end_learning_rate) * \
           ((1 - float(global_step) / float(decay_steps)) ** power) + end_learning_rate


def piecewise_decay(global_step, boundaries, values):
    assert len(boundaries) + 1 == len(values)
    for i in range(len(boundaries)):
        if global_step < boundaries[i]:
            return values[i]
    return values[len(values) - 1]
Q
Qiao Longfei 已提交
85

86

S
shippingwang 已提交
87 88
def cosine_decay(global_step, learning_rate, step_each_epoch, epochs):
    cur_epoch = math.floor(global_step / step_each_epoch)
89 90
    decayed_lr = learning_rate * 0.5 * (math.cos(cur_epoch * math.pi / epochs) +
                                        1)
S
shippingwang 已提交
91 92 93
    return decayed_lr


94 95 96 97 98 99 100 101
def noam_decay(global_step, d_model, warmup_steps, learning_rate=1.0):
    a = math.pow(global_step, -0.5)
    b = math.pow(warmup_steps, -1.5) * global_step
    decayed_lr = learning_rate * math.pow(d_model, -0.5) * min(a, b)

    return decayed_lr


102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
def linear_lr_warmup(global_step, warmup_steps, start_lr, end_lr):
    linear_step = end_lr - start_lr
    decayed_lr = start_lr + linear_step * (global_step / warmup_steps)
    return decayed_lr


def multi_step_decay(global_step, learning_rate, milestones, decay_rate=0.1):
    for i in range(len(milestones)):
        if global_step < milestones[i]:
            return learning_rate * math.pow(decay_rate, i)

    return learning_rate * math.pow(decay_rate, len(milestones))


def step_decay(global_step, learning_rate, step_size, decay_rate=0.1):
    return learning_rate * math.pow(decay_rate, global_step // step_size)


120 121 122 123
def lambda_decay(global_step, learning_rate, lr_lambda):
    return learning_rate * lr_lambda(global_step)


124
class TestLearningRateDecayDygraph(unittest.TestCase):
125

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    def test_LR_state_dict(self):
        with fluid.dygraph.guard():
            x = np.random.uniform(-1, 1, [3, 10]).astype("float32")
            linear = fluid.dygraph.Linear(10, 10)
            input = fluid.dygraph.to_variable(x)

            Exponential_scheduler = fluid.dygraph.ExponentialDecay(
                learning_rate=0.1,
                decay_steps=10000,
                decay_rate=0.5,
                staircase=True)
            Step_scheduler = fluid.dygraph.StepDecay(0.5, step_size=3)
            Reducelr_scheduler = fluid.dygraph.ReduceLROnPlateau(
                learning_rate=1.0, decay_rate=0.5, patience=5, cooldown=3)

141 142 143 144 145 146
            adam1 = fluid.optimizer.Adam(learning_rate=Exponential_scheduler,
                                         parameter_list=linear.parameters())
            adam2 = fluid.optimizer.Adam(learning_rate=Step_scheduler,
                                         parameter_list=linear.parameters())
            adam3 = fluid.optimizer.Adam(learning_rate=Reducelr_scheduler,
                                         parameter_list=linear.parameters())
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
            print(adam3.state_dict())

            for epoch in range(10):
                out = linear(input)
                loss = fluid.layers.reduce_mean(out)
                loss.backward()
                adam1.minimize(loss)
                adam2.minimize(loss)
                adam3.minimize(loss)
                linear.clear_gradients()

                Step_scheduler.epoch()
                Reducelr_scheduler.step(loss)

            fluid.dygraph.save_dygraph(linear.state_dict(), "save_path")

            Exponential_scheduler_test = fluid.dygraph.ExponentialDecay(
                learning_rate=0.1,
                decay_steps=10000,
                decay_rate=0.5,
                staircase=True)
            Step_scheduler_test = fluid.dygraph.StepDecay(0.5, step_size=3)
            Reducelr_scheduler_test = fluid.dygraph.ReduceLROnPlateau(
                learning_rate=1.0, decay_rate=0.5, patience=5, cooldown=3)

            fluid.dygraph.save_dygraph(adam1.state_dict(), "save_path")
            _, opt_state = fluid.dygraph.load_dygraph("save_path")
            adam_test = fluid.optimizer.Adam(
                learning_rate=Exponential_scheduler_test,
                parameter_list=linear.parameters())
            adam_test.set_dict(opt_state)
178 179 180 181
            self.assertEqual(
                adam_test._learning_rate.step_num,
                adam1._learning_rate.step_num,
                "epoch_num is different before and after set_dict")
182 183 184

            fluid.dygraph.save_dygraph(adam2.state_dict(), "save_path")
            _, opt_state = fluid.dygraph.load_dygraph("save_path")
185 186
            adam_test = fluid.optimizer.Adam(learning_rate=Step_scheduler_test,
                                             parameter_list=linear.parameters())
187 188
            adam_test.set_dict(opt_state)
            self.assertEqual(
189 190 191 192 193
                adam_test._learning_rate.epoch_num,
                adam2._learning_rate.epoch_num,
                "epoch_num is different before and after set_dict")
            self.assertEqual(
                adam_test._learning_rate(), adam2._learning_rate(),
194 195 196 197 198 199 200 201
                "current learning rate is different before and after set_dict")

            fluid.dygraph.save_dygraph(adam3.state_dict(), "save_path")
            _, opt_state = fluid.dygraph.load_dygraph("save_path")
            adam_test = fluid.optimizer.Adam(
                learning_rate=Reducelr_scheduler_test,
                parameter_list=linear.parameters())
            adam_test.set_dict(opt_state)
202 203 204 205
            self.assertEqual(
                adam_test._learning_rate.best_loss,
                adam3._learning_rate.best_loss.numpy()[0],
                "best_loss is different before and after set_dict")
206 207 208 209 210 211 212 213 214 215 216 217
            self.assertEqual(
                adam_test._learning_rate.cooldown_counter,
                adam3._learning_rate.cooldown_counter,
                "cooldown_counter is different before and after set_dict")
            self.assertEqual(
                adam_test._learning_rate.num_bad_epochs,
                adam3._learning_rate.num_bad_epochs,
                "num_bad_epochs is different before and after set_dict")
            self.assertEqual(adam_test._learning_rate.epoch_num,
                             adam3._learning_rate.epoch_num,
                             "epoch is different before and after set_dict")
            self.assertEqual(
218
                adam_test._learning_rate(), adam3._learning_rate(),
219 220
                "current learning rate is different before and after set_dict")

221
    def test_NoamDecay(self):
222 223 224 225 226 227 228 229 230 231 232 233 234 235
        with fluid.dygraph.guard():
            d_model = 0.01
            warmup_steps = 200
            learning_rate = 2.0
            lr = fluid.layers.noam_decay(d_model, warmup_steps, learning_rate)
            for step in range(5):
                step += 1
                right_result = noam_decay(step, d_model, warmup_steps,
                                          learning_rate)
                fluid_result = lr()

                self.assertAlmostEqual(
                    right_result,
                    fluid_result[0],
236 237 238
                    msg=
                    'Failed lr scheduler in step {0}, Python result is {1}, Fluid result is {2}'
                    .format(step, right_result, fluid_result[0]))
239

240 241
    def test_LinearLrWarmup(self):
        with fluid.dygraph.guard():
242 243 244 245 246 247 248 249
            lr = fluid.layers.polynomial_decay(learning_rate=1.0,
                                               decay_steps=10,
                                               end_learning_rate=0.0,
                                               power=1.0)
            lr = fluid.layers.linear_lr_warmup(learning_rate=lr,
                                               warmup_steps=2,
                                               start_lr=0.0,
                                               end_lr=1.0)
250 251 252 253 254 255

            right_result = [0.5, 0.9, 0.8, 0.7, 0.6]
            for i in range(5):

                t = lr()

256 257 258
                np.testing.assert_allclose(t.numpy()[0].item(),
                                           right_result[i],
                                           rtol=1e-05)
259 260

            with self.assertRaises(TypeError):
261 262 263 264
                lr = fluid.layers.linear_lr_warmup(learning_rate="fake_lr",
                                                   warmup_steps=2,
                                                   start_lr=0.0,
                                                   end_lr=1.0)
265 266 267 268 269 270

    def test_MultiStepDecay(self):
        with fluid.dygraph.guard():
            learning_rate = 0.5
            milestones = [2, 4, 8]
            decay_rate = 0.2
271 272
            linear = fluid.dygraph.Linear(10, 10)

273 274
            scheduler = fluid.dygraph.MultiStepDecay(learning_rate, milestones,
                                                     decay_rate)
275 276 277

            adam = fluid.optimizer.AdamOptimizer(
                learning_rate=scheduler, parameter_list=linear.parameters())
278 279 280
            for epoch in range(10):
                right_result = multi_step_decay(epoch, learning_rate,
                                                milestones, decay_rate)
281
                fluid_result = adam.current_step_lr()
282 283 284 285
                scheduler.epoch()
                self.assertAlmostEqual(
                    right_result,
                    fluid_result,
286 287 288
                    msg=
                    'Failed lr scheduler in epoch {0}, Python result is {1}, Fluid result is {2}'
                    .format(epoch, right_result, fluid_result))
289 290 291 292 293 294 295 296 297 298 299 300 301

            with self.assertRaises(ValueError):
                lr = fluid.dygraph.MultiStepDecay(learning_rate, [30, 50, 20],
                                                  0.1)

            with self.assertRaises(ValueError):
                lr = fluid.dygraph.MultiStepDecay(learning_rate, [20, 30, 50],
                                                  1)

            with self.assertRaises(TypeError):
                lr = fluid.dygraph.MultiStepDecay("test", [20, 30, 50])

            with self.assertRaises(ValueError):
302
                lr = fluid.dygraph.MultiStepDecay(-1, [20, 30, 50])
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

    def test_StepDecay(self):
        with fluid.dygraph.guard():
            learning_rate = 0.5
            step_size = 3
            decay_rate = 0.2
            scheduler = fluid.dygraph.StepDecay(learning_rate, step_size,
                                                decay_rate)
            for epoch in range(10):
                right_result = step_decay(epoch, learning_rate, step_size,
                                          decay_rate)
                fluid_result = scheduler().numpy()[0]
                scheduler.epoch()
                self.assertAlmostEqual(
                    right_result,
                    fluid_result,
319 320 321
                    msg=
                    'Failed lr scheduler in epoch {0}, Python result is {1}, Fluid result is {2}'
                    .format(epoch, right_result, fluid_result))
322 323

            with self.assertRaises(TypeError):
324
                lr = fluid.dygraph.StepDecay(learning_rate, "test", 0.1)
325 326

            with self.assertRaises(ValueError):
327
                lr = fluid.dygraph.StepDecay(learning_rate, 20, 2)
328

329 330 331 332 333 334 335
    def test_LambdaDecay(self):
        with fluid.dygraph.guard():
            learning_rate = 0.5
            lr_lambda = lambda x: 0.95**x
            scheduler = fluid.dygraph.LambdaDecay(learning_rate, lr_lambda)

            linear = fluid.dygraph.nn.Linear(10, 10)
336 337
            adam = fluid.optimizer.Adam(scheduler,
                                        parameter_list=linear.parameters())
338 339 340 341 342 343 344 345

            for epoch in range(30):
                right_result = lambda_decay(epoch, learning_rate, lr_lambda)
                fluid_result = scheduler().numpy()[0]
                scheduler.epoch()
                self.assertAlmostEqual(
                    right_result,
                    fluid_result,
346 347 348
                    msg=
                    'Failed lr scheduler in epoch {0}, Python result is {1}, Fluid result is {2}'
                    .format(epoch, right_result, fluid_result))
349 350 351 352

            with self.assertRaises(TypeError):
                lr = fluid.dygraph.LambdaDecay(learning_rate, "test")

353

354
class TestLearningRateDecay(unittest.TestCase):
355

356
    def check_decay(self, python_decay_fn, fluid_decay_fn, kwargs):
Q
QI JUN 已提交
357 358 359 360 361 362 363 364 365
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            self.check_decay_with_place(place, python_decay_fn, fluid_decay_fn,
                                        kwargs)

    def check_decay_with_place(self, place, python_decay_fn, fluid_decay_fn,
                               kwargs):
366 367
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
Q
QI JUN 已提交
368

369
        with fluid.program_guard(main_prog, startup_prog):
370
            decayed_lr = fluid_decay_fn(**kwargs)
Q
Qiao Longfei 已提交
371 372 373 374

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

375
        exe.run(startup_prog)
376

Q
Qiao Longfei 已提交
377
        for step in range(10):
378 379 380
            # Step of NoamDecay starts from 1.
            if python_decay_fn.__name__ == 'noam_decay':
                step += 1
381
            lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
382 383
            python_decayed_lr = python_decay_fn(global_step=float(step),
                                                **kwargs)
Y
Yu Yang 已提交
384 385 386
            self.assertAlmostEqual(
                python_decayed_lr,
                lr_val[0],
387 388 389 390
                msg=
                'Failed lr scheduler is {0}, step {1}, Python result is {2}, Fluid result is {3}'
                .format(python_decay_fn.__name__, str(step),
                        str(python_decayed_lr), str(lr_val[0])))
Q
Qiao Longfei 已提交
391 392

    def test_decay(self):
393 394 395 396 397 398 399 400 401
        common_kwargs_true = {
            "learning_rate": 1.0,
            "decay_steps": 5,
            "decay_rate": 0.5,
            "staircase": True
        }
        common_kwargs_false = copy.deepcopy(common_kwargs_true)
        common_kwargs_false["staircase"] = False

Q
Qiao Longfei 已提交
402
        decay_fns = [
403 404 405 406 407 408
            (exponential_decay, layers.exponential_decay, common_kwargs_true),
            (exponential_decay, layers.exponential_decay, common_kwargs_false),
            (natural_exp_decay, layers.natural_exp_decay, common_kwargs_true),
            (natural_exp_decay, layers.natural_exp_decay, common_kwargs_false),
            (inverse_time_decay, layers.inverse_time_decay, common_kwargs_true),
            (inverse_time_decay, layers.inverse_time_decay,
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
             common_kwargs_false),
            (polynomial_decay, layers.polynomial_decay, {
                "learning_rate": 1.0,
                "decay_steps": 5,
                "cycle": True
            }),
            (polynomial_decay, layers.polynomial_decay, {
                "learning_rate": 1.0,
                "decay_steps": 5,
                "cycle": False
            }),
            (piecewise_decay, layers.piecewise_decay, {
                "boundaries": [3, 6, 9],
                "values": [0.1, 0.2, 0.3, 0.4]
            }),
            (cosine_decay, layers.cosine_decay, {
                "learning_rate": 0.1,
                "step_each_epoch": 100,
                "epochs": 120
            }),
            (noam_decay, layers.noam_decay, {
                "d_model": 0.01,
                "warmup_steps": 200,
                "learning_rate": 2.0
            })
Q
Qiao Longfei 已提交
434 435
        ]

436
        for py_decay_fn, fluid_decay_fn, kwargs in decay_fns:
437
            print("class=" + self.__class__.__name__ + " decay_fn=" +
438
                  py_decay_fn.__name__ + " kwargs=" + str(kwargs))
Q
Qiao Longfei 已提交
439 440 441
            main_program = framework.Program()
            startup_program = framework.Program()
            with framework.program_guard(main_program, startup_program):
442
                self.check_decay(py_decay_fn, fluid_decay_fn, kwargs)
Q
Qiao Longfei 已提交
443 444


445
class TestLinearWamrupLearningRateDecay(unittest.TestCase):
446

447 448 449 450 451 452
    def check_decay_with_place(self, place, python_decay_fn, fluid_decay_fn,
                               kwargs):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()

        warmup_steps = 10
Q
qingqing01 已提交
453
        start_lr = 0.1 / 3.
454 455 456
        end_lr = 0.1

        with fluid.program_guard(main_prog, startup_prog):
457 458
            decayed_lr = layers.linear_lr_warmup(fluid_decay_fn(**kwargs),
                                                 warmup_steps, start_lr, end_lr)
459 460 461 462 463 464

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)

        for step in range(20):
465 466 467
            # Step of NoamDecay starts from 1.
            if fluid_decay_fn.__name__ == 'noam_decay':
                step += 1
468 469
            lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
            if step < warmup_steps:
470 471
                python_decayed_lr = linear_lr_warmup(float(step), warmup_steps,
                                                     start_lr, end_lr)
472
            else:
473 474
                python_decayed_lr = python_decay_fn(global_step=float(step),
                                                    **kwargs)
475 476 477
            self.assertAlmostEqual(
                python_decayed_lr,
                lr_val[0],
478 479 480 481
                msg=
                'Test {0} Failed, step {1}, Python result is {2}, Fluid result is {3}'
                .format(python_decay_fn.__name__, str(step),
                        str(python_decayed_lr), str(lr_val[0])))
482 483


Q
qingqing01 已提交
484
class TestLinearWamrupLearningRateDecayWithScalarInput(unittest.TestCase):
485

Q
qingqing01 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    def run_scalar_lr(self, place, lr, start_lr, end_lr):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()

        warmup_steps = 10

        with fluid.program_guard(main_prog, startup_prog):
            decayed_lr = layers.linear_lr_warmup(lr, warmup_steps, start_lr,
                                                 end_lr)

        exe = fluid.Executor(place)
        exe.run(startup_prog)

        for step in range(20):
            lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
            if step < warmup_steps:
502 503
                expected_lr = linear_lr_warmup(float(step), warmup_steps,
                                               start_lr, end_lr)
Q
qingqing01 已提交
504 505 506 507 508 509 510 511 512
            else:
                expected_lr = lr
            self.assertAlmostEqual(
                expected_lr,
                lr_val[0],
                msg='Test failed, step {0}, expected {1}, but got {2}'.format(
                    step, expected_lr, lr_val[0]))

    def test_scalar_lr(self):
513

Q
qingqing01 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
        def run_places(lr, start_lr, end_lr):
            places = [fluid.CPUPlace()]
            if core.is_compiled_with_cuda():
                places.append(fluid.CUDAPlace(0))
            for p in places:
                self.run_scalar_lr(p, lr, start_lr, end_lr)

        # float
        lr = 0.2
        start_lr = 0.1 / 3.
        end_lr = 0.2
        run_places(lr, start_lr, end_lr)

        # int end_lr
        lr = 2.
        start_lr = 0.1 / 3.
        end_lr = 1
        run_places(lr, start_lr, end_lr)

        # int
        lr = 1
        start_lr = 0
        end_lr = 1
        run_places(lr, start_lr, end_lr)


Q
Qiao Longfei 已提交
540 541
if __name__ == '__main__':
    unittest.main()