allclose_op.cc 6.6 KB
Newer Older
Z
Zhen Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/allclose_op.h"
H
huangxu96 已提交
16
#include <cmath>
17
#include <string>
Z
Zhen Wang 已提交
18
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/fluid/framework/op_version_registry.h"
Z
Zhen Wang 已提交
20
#include "paddle/fluid/framework/operator.h"
H
huangxu96 已提交
21
#include "paddle/fluid/platform/enforce.h"
Z
Zhen Wang 已提交
22 23 24 25

namespace paddle {
namespace operators {

H
huangxu96 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
template <typename T>
struct GetTensorValue<platform::CPUDeviceContext, T> {
  T operator()(const platform::CPUDeviceContext& dev_ctx,
               const framework::Tensor& tensor) const {
    return *(tensor.data<T>());
  }
};

template <typename T>
struct AllcloseFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& ctx,
                  const framework::Tensor& in, const framework::Tensor& other,
                  const double rtol, const double atol, bool equal_nan,
                  framework::Tensor* output) {
    auto* in_a = in.data<T>();
    auto* in_b = other.data<T>();
    auto* out_data = output->mutable_data<bool>(ctx.GetPlace());
    auto num = in.numel();
    *out_data = true;
    for (int i = 0; i < num; i++) {
      const T a = in_a[i], b = in_b[i];
      bool val;
      if (std::isnan(a) || std::isnan(b)) {
        val = equal_nan && std::isnan(a) == std::isnan(b);
      } else {
        T left = (a > b ? a - b : b - a);
        T right = atol + (b > 0 ? rtol * b : (-rtol) * b);
        T diff = (left > right ? left - right : right - left);
        val = a == b || left <= right || diff <= 1e-15;
      }
      *out_data &= val;
    }
  }
};

Z
Zhen Wang 已提交
61 62 63
class AllcloseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
64 65 66 67
    AddInput("Input",
             "The input tensor, it's data type should be float32, float64.");
    AddInput("Other",
             "The input tensor, it's data type should be float32, float64.");
68 69
    AddInput("Rtol", "The relative tolerance.").AsDispensable();
    AddInput("Atol", "The absolute tolerance.").AsDispensable();
70
    AddOutput("Out", "The output tensor, it's data type is bool.");
71 72 73 74 75 76
    AddAttr<std::string>("rtol",
                         "The relative tolerance. Default: :math:`1e-5` .")
        .SetDefault("1e-5");
    AddAttr<std::string>("atol",
                         "The absolute tolerance. Default: :math:`1e-8` .")
        .SetDefault("1e-8");
Z
Zhen Wang 已提交
77 78 79 80 81 82
    AddAttr<bool>("equal_nan",
                  "If :math:`True` , then two :math:`NaNs` will be "
                  "compared as equal. Default: :math:`False` .")
        .SetDefault(false);

    AddComment(R"DOC( 
83
This operator checks if all :math:`x` and :math:`y` satisfy the condition:
Z
Zhen Wang 已提交
84

85 86
.. math::
    \left| x - y \right| \leq atol + rtol \times \left| y \right|
Z
Zhen Wang 已提交
87

88
elementwise, for all elements of :math:`x` and :math:`y`. The behaviour of this
Z
Zhen Wang 已提交
89 90 91 92 93 94 95 96 97 98
operator is analogous to :math:`numpy.allclose`, namely that it returns :math:`True` if
two tensors are elementwise equal within a tolerance.
)DOC");
  }
};

class AllcloseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

H
huangxu96 已提交
99 100 101 102
  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Allclose");
    OP_INOUT_CHECK(ctx->HasInput("Other"), "Input", "Other", "Allclose");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Allclose");
Z
Zhen Wang 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

    auto input_dim = ctx->GetInputDim("Input");
    auto other_dim = ctx->GetInputDim("Other");
    PADDLE_ENFORCE_EQ(input_dim.size(), other_dim.size(),
                      platform::errors::PreconditionNotMet(
                          "Input(Input) and Input(Other) must have the same "
                          "dimension size."));
    int n = input_dim.size();
    bool is_runtime = ctx->IsRuntime();
    for (int i = 0; i < n; i++) {
      if (is_runtime) {
        PADDLE_ENFORCE_EQ(input_dim[i], other_dim[i],
                          platform::errors::PreconditionNotMet(
                              "The value at dim %d of Input(Input) is not "
                              "equal to the Input(Other): %ld != %ld.",
                              i, input_dim[i], other_dim[i]));
      } else {
        if (!(input_dim[i] < 0 || other_dim[i] < 0)) {
          PADDLE_ENFORCE_EQ(input_dim[i], other_dim[i],
                            platform::errors::PreconditionNotMet(
                                "The value at dim %d of Input(Input) is not "
                                "equal to the Input(Other): %ld != %ld.",
                                i, input_dim[i], other_dim[i]));
        }
      }
    }

    ctx->SetOutputDim("Out", framework::make_ddim({1}));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
H
huangxu96 已提交
135
      const framework::ExecutionContext& ctx) const override {
Z
Zhen Wang 已提交
136 137 138 139 140 141 142 143
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
  }
};

class AllcloseOpVarTypeInference : public framework::VarTypeInference {
 public:
H
huangxu96 已提交
144
  void operator()(framework::InferVarTypeContext* ctx) const override {
145
    ctx->SetOutputDataType("Out", framework::proto::VarType::BOOL);
Z
Zhen Wang 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CPU = paddle::platform::CPUDeviceContext;

REGISTER_OPERATOR(
    allclose, ops::AllcloseOp, ops::AllcloseOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
    ops::AllcloseOpVarTypeInference);
REGISTER_OP_CPU_KERNEL(allclose, ops::AllcloseKernel<CPU, float>,
                       ops::AllcloseKernel<CPU, double>);
162 163 164 165 166 167 168 169 170 171 172 173 174

REGISTER_OP_VERSION(allclose)
    .AddCheckpoint(
        R"ROC(
      Upgrade allclose add 2 attributes [atol, rtol].
    )ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewAttr("rtol",
                     "(string) The relative tolerance. Default: :math:`1e-5` .",
                     std::string("1e-5"))
            .NewAttr("atol",
                     "(string) The absolute tolerance. Default: :math:`1e-8` .",
                     std::string("1e-8")));