parallel.py 15.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import warnings
18 19
from multiprocessing import Process  # noqa: F401
from multiprocessing import Manager  # noqa: F401
20 21
import time
import sys
22
import paddle
23 24 25 26 27

from paddle import compat as cpt

# deprecated module import
from paddle.fluid import core
L
lilong12 已提交
28
from paddle.fluid.framework import in_dygraph_mode
29 30
from paddle.fluid.framework import _set_expected_place
from paddle.fluid.dygraph import parallel_helper
X
xiongkun 已提交
31
from paddle.distributed.fleet.launch_utils import check_backend
32
from paddle.fluid.dygraph.parallel import ParallelEnv
33
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready  # noqa: F401
34
from paddle.distributed import collective
L
lilong12 已提交
35 36 37
from paddle.distributed.collective import _set_group_map
from paddle.distributed.collective import _set_group_map_by_name
from paddle.distributed.collective import _get_group_map_by_name
38 39 40
from paddle.distributed.collective import _group_map_by_name
from paddle.distributed.collective import _default_group_name
from paddle.distributed.collective import _valid_backend_list
L
lilong12 已提交
41 42
from paddle.distributed.collective import _set_default_backend
from paddle.distributed.collective import _set_default_store
43 44
from paddle.distributed.collective import _new_process_group_impl
from paddle.distributed.collective import Group
45
from paddle.distributed.collective import _set_group_map_backend
46

47
__all__ = []
48 49 50

ParallelStrategy = core.ParallelStrategy

51
# NOTE(chenweihang): Maintain a global parallel env to avoid
52 53 54 55 56 57 58 59 60 61
# initializing ParallelEnv every time and improve performance
_global_parallel_env = None


def _get_global_parallel_env():
    global _global_parallel_env
    if _global_parallel_env is None:
        _global_parallel_env = ParallelEnv()
    return _global_parallel_env

62

63
def _start_kv_server(port, http_server_d, size):
64
    from paddle.distributed.fleet.utils.http_server import KVServer
65
    http_server = KVServer(int(port), size=size)
66
    http_server.start()
67
    wait_seconds = 3
L
lilong12 已提交
68
    while http_server_d.get("running", False) or not http_server.should_stop():
69 70 71 72
        time.sleep(wait_seconds)
    http_server.stop()


X
xiongkun 已提交
73 74
def _is_cpuonly(backend):
    check_backend(backend)
75 76 77 78
    if (backend in ['auto', 'nccl', 'bkcl', 'hccl', 'heter', 'cncl'] and
        (core.is_compiled_with_cuda() or core.is_compiled_with_xpu()
         or core.is_compiled_with_npu()
         or core.is_compiled_with_mlu())) or backend is 'xccl':
79

80 81 82 83 84 85
        # passes 'auto' and can use cuda or xpu, use the default logics. so return False
        return False
    else:
        return True


K
kuizhiqing 已提交
86 87 88 89 90 91 92 93
def _check_var_exists(var_name):
    var = os.environ.get(var_name, None)
    if var is None:
        raise ValueError("paddle.distributed initialize error, "
                         "environment variable %s is needed, but not set." %
                         var_name)


X
xiongkun 已提交
94
def init_parallel_env():
95
    """
96
    Initialize parallel training environment in dynamic graph mode.
97

98
    .. note::
99
        Now initialize both `NCCL` and `GLOO` contexts for communication.
100

101 102 103 104 105
    Args:
        backend (string): A string represents the backend used by DataParallel,
            should be one of 'gloo'(for cpu), 'nccl'(for cuda), 'bkcl'(for xpu), 'auto'(auto detect).
            The auto detection prefer 'nccl', 'bkcl' than 'gloo'.

106 107 108 109 110
    Returns:
        None
        
    Examples:
        .. code-block:: python
111
            # required: gpu
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
127
                # 1. initialize parallel environment
128 129
                dist.init_parallel_env()

130
                # 2. create data parallel layer & optimizer
131 132 133 134 135 136 137
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

138
                # 3. run layer
139 140 141 142 143 144 145 146 147 148 149 150 151 152
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
    """

153 154 155 156 157 158 159 160 161 162 163
    # 0. get env & check world size
    global _global_parallel_env
    # when call init_parallel_env, need update `_global_parallel_env`
    _global_parallel_env = ParallelEnv()
    parallel_env = _global_parallel_env
    # if not parallel, `init_parallel_env` do nothing
    if parallel_env.world_size < 2:
        warnings.warn(
            "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
        )
        return
164
    # NOTE(xiongkun): support cpu gloo only, add this environment variable to
165
    #                 enable cpu only gloo prarllel training)
X
xiongkun 已提交
166 167
    backend = os.environ.get('PADDLE_DISTRI_BACKEND', 'auto')
    is_cpu_only = _is_cpuonly(backend)
168 169 170 171
    # 1. gpu xpu check, must be gpu or xpu,
    if not (is_cpu_only or core.is_compiled_with_cuda()
            or core.is_compiled_with_xpu() or core.is_compiled_with_npu()
            or core.is_compiled_with_mlu()):
172
        raise NotImplementedError(
173
            "If you want to use CPU-only version, please use 'gloo' as backend")
174

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    if backend == "xccl":
        FLAGS_selected_custom_devices = 'FLAGS_selected_{}s'.format(
            parallel_env.device_type)
        _check_var_exists(FLAGS_selected_custom_devices)
    else:
        if not is_cpu_only and core.is_compiled_with_cuda():
            _check_var_exists("FLAGS_selected_gpus")
            backend = "nccl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_xpu():
            _check_var_exists('FLAGS_selected_xpus')
            backend = "bkcl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_npu():
            _check_var_exists('FLAGS_selected_npus')
            backend = "hccl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_mlu():
            _check_var_exists('FLAGS_selected_mlus')
            backend = "cncl" if backend == "auto" else backend
192

193 194 195 196 197
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

198 199 200 201 202 203
    # NOTE(chenweihang): [ why config global place here? ]
    # the dygraph mode will be set to default mode,
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
204 205 206 207
    if backend == "xccl":
        place = core.CustomPlace(parallel_env.device_type,
                                 parallel_env.device_id)
    elif is_cpu_only:
208 209 210 211 212 213 214 215 216 217 218 219 220
        place = core.CPUPlace()
    elif core.is_compiled_with_cuda():
        place = core.CUDAPlace(parallel_env.device_id)
    elif core.is_compiled_with_xpu():
        place = core.XPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_npu():
        place = core.NPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_mlu():
        place = core.MLUPlace(parallel_env.device_id)

    _set_expected_place(place)

    group = None
L
lilong12 已提交
221 222 223 224
    if backend in _valid_backend_list and in_dygraph_mode():
        if _default_group_name in _get_group_map_by_name():
            return _get_group_map_by_name()[_default_group_name]
        _set_default_backend(backend)
225 226 227 228 229 230 231 232
        rank = int(os.getenv("PADDLE_TRAINER_ID"))
        world_size = int(os.getenv("PADDLE_TRAINERS_NUM"))
        assert rank >= 0 and world_size > rank and world_size > 1, (
            "rank must be non-negative and world_size must be the "
            "maximum rank plus one. Moreover, at least two processes are "
            "required to create a process group.")
        master_addr = os.getenv("MASTER_ADDR", None)
        master_port = os.getenv("MASTER_PORT", None)
233 234
        endpoints = ":".join([master_addr, master_port
                              ]) if master_addr and master_port else None
235
        if endpoints is None:
236 237 238 239 240 241 242 243 244 245 246
            endpoints = os.getenv("PADDLE_MASTER", None)
        if endpoints is None:
            endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS").split(',')[0]
        assert endpoints, (
            "The environment variable 'MASTER_ADDR' and 'MASTER_PORT' "
            "must be specified, for example 'export MASTER_ADDR=127.0.0.1' "
            "and 'export MASTER_ADDR=54612'. Or you can start your training"
            "with paddle.distributed.run module.")
        master_addr, master_port = endpoints.split(":")
        master_port = int(master_port)
        is_master = rank == 0
247
        stop_check_timeout = int(os.getenv("FLAGS_stop_check_timeout", "900"))
248 249 250 251
        default_store = core.TCPStore(master_addr,
                                      master_port,
                                      is_master,
                                      world_size,
G
gongweibao 已提交
252
                                      timeout=stop_check_timeout)
L
lilong12 已提交
253
        _set_default_store(default_store)
254 255 256 257 258 259
        pg = _new_process_group_impl(backend,
                                     default_store,
                                     rank,
                                     world_size,
                                     _default_group_name,
                                     pg_options=None)
260
        ranks = list(range(world_size))
261 262 263 264 265 266
        group = Group(rank,
                      world_size,
                      id=0,
                      ranks=ranks,
                      pg=pg,
                      name=_default_group_name)
L
lilong12 已提交
267 268
        _set_group_map_by_name(_default_group_name, group)
        _set_group_map(0, group)
269
        _set_group_map_backend(group, backend)
270
        parallel_helper._set_parallel_ctx(True)
271 272

        paddle.distributed.barrier(group=group)
273 274
        return group

K
kuizhiqing 已提交
275
    node_num = set([i.split(":")[0] for i in parallel_env.trainer_endpoints])
276
    # 3: init gloo context (step 1: httpsever start)
L
lilong12 已提交
277
    init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
K
kuizhiqing 已提交
278
    if is_cpu_only or init_gloo or backend == "heter":
L
lilong12 已提交
279 280 281 282 283 284 285 286
        ep_rank_0 = parallel_env.trainer_endpoints[0].split(":")
        manager = Manager()
        # glboal dict to store status
        http_server_d = manager.dict()
        http_server_d["running"] = False
        if parallel_env.rank == 0:
            # The scope for worker used by http server is '_worker'
            size = {'_worker': parallel_env.world_size}
K
kuizhiqing 已提交
287 288
            if backend == "heter":
                size = {'_worker': len(node_num)}
289 290
            http_server = Process(target=_start_kv_server,
                                  args=(int(ep_rank_0[1]), http_server_d, size))
L
lilong12 已提交
291 292 293
            http_server.daemon = True
            http_server_d["running"] = True
            http_server.start()
294 295

    # 4. init NCCL ParallelStrategy
296
    strategy = ParallelStrategy()
297 298
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
299 300 301 302
    strategy.nranks = parallel_env.world_size
    strategy.local_rank = parallel_env.rank
    strategy.trainer_endpoints = parallel_env.trainer_endpoints
    strategy.current_endpoint = parallel_env.current_endpoint
303
    strategy.nrings = parallel_env.nrings
304

K
kuizhiqing 已提交
305
    # init nccl or hccl or bkcl or heter context
306 307 308
    if is_cpu_only:
        parallel_helper._set_parallel_ctx(
            core.GLOOParallelContext(strategy, place))
K
kuizhiqing 已提交
309 310 311
    elif (backend == "heter"):
        parallel_helper._set_parallel_ctx(
            core.HeterParallelContext(strategy, parallel_env.device_id))
312
    elif core.is_compiled_with_cuda():
313 314 315 316 317
        parallel_helper._set_parallel_ctx(
            core.NCCLParallelContext(strategy, place))
    elif core.is_compiled_with_xpu():
        parallel_helper._set_parallel_ctx(
            core.BKCLParallelContext(strategy, place))
318 319 320
    elif core.is_compiled_with_npu():
        parallel_helper._set_parallel_ctx(
            core.HCCLParallelContext(strategy, place))
321 322 323
    elif core.is_compiled_with_mlu():
        parallel_helper._set_parallel_ctx(
            core.CNCLParallelContext(strategy, place))
324

K
kuizhiqing 已提交
325 326 327 328 329
    if backend != "heter":
        other_endpoints = strategy.trainer_endpoints[:]
        other_endpoints.remove(strategy.current_endpoint)
        if not is_cpu_only and strategy.local_rank == 0:
            wait_server_ready(other_endpoints)
330

331
    parallel_helper._init_parallel_ctx()
K
kuizhiqing 已提交
332

333 334 335 336
    # 5: init gloo context (step 2: gloo init)
    # dividing init_gloo into two part beacause nccl and gloo
    # are separately looking for free ports which sometimes
    # leads to port-conflict.
K
kuizhiqing 已提交
337
    if (is_cpu_only or backend == "heter") and parallel_env.rank == 0:
338
        # compare to init_gloo, we don't need to
339 340 341
        # init gloo, because we do this in _init_parallel_ctx;
        http_server_d["running"] = False
        http_server.join()
L
lilong12 已提交
342

343 344
    elif init_gloo:
        wait_server_ready([parallel_env.trainer_endpoints[0]])
L
lilong12 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358
        gloo_strategy = core.GlooParallelStrategy()
        gloo_strategy.rank = parallel_env.rank
        gloo_strategy.rank_num = parallel_env.world_size
        gloo_strategy.ip_address = ep_rank_0[0]
        gloo_strategy.ip_port = int(ep_rank_0[1])
        default_init_timeout_seconds = 3600
        default_run_timeout_seconds = 9999999
        gloo_strategy.init_seconds = default_init_timeout_seconds
        gloo_strategy.run_seconds = default_run_timeout_seconds
        gloo = core.GlooParallelContext(gloo_strategy)
        gloo.init()
        if parallel_env.rank == 0:
            http_server_d["running"] = False
            http_server.join()
359
    return group
360

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

def get_rank():
    """
    Returns the rank of current trainer.

    Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . 
    The default value is 0.

    Returns:
        (int) The rank of current trainer.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
382
    return _get_global_parallel_env().rank
383 384 385 386


def get_world_size():
    """
387
    Returns the number of trainers (number of processes participating in current job).
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

    Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . 
    The default value is 1.

    Returns:
        (int) The number of trainers.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            print("The world_size is %d" % dist.get_world_size())
            # The world_size is 4
    """
405
    return _get_global_parallel_env().world_size