data_transform.cc 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/data_transform.h"
16

17
#include "paddle/phi/api/lib/kernel_dispatch.h"
18
#include "paddle/phi/api/lib/utils/storage.h"
19 20 21
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/kernels/cast_kernel.h"
#include "paddle/phi/kernels/transfer_layout_kernel.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

#include "paddle/fluid/framework/data_device_transform.h"

namespace paddle {
namespace experimental {

inline bool NeedTransformDataType(const DataType& input,
                                  const DataType& target,
                                  const TransformFlag& transform_flag) {
  return input != target &&
         (transform_flag.need_trans_data_type() ||
          target == DataType::COMPLEX64 || target == DataType::COMPLEX128);
}

inline bool NeedTransformPlace(const paddle::platform::Place& input,
                               const Backend& target,
                               const TransformFlag& transform_flag) {
39 40 41
  bool ret =
      input.GetType() == AllocationType::GPUPINNED ||
      (transform_flag.need_trans_backend() && target != Backend::ALL_BACKEND &&
42 43
       phi::TransToPhiBackend(input) !=
           (target != Backend::GPUDNN ? target : Backend::GPU));
44 45 46 47 48 49 50 51 52 53 54 55
  return ret;
}

inline bool NeedTransformLayout(const DataLayout& input,
                                const DataLayout& target,
                                const TransformFlag& transform_flag) {
  bool ret = transform_flag.need_trans_layout() &&
             (input != DataLayout::ALL_LAYOUT &&
              target != DataLayout::ALL_LAYOUT && input != target);
  return ret;
}

56 57
inline phi::DenseTensor TransDataLayout(const phi::DenseTensor& tensor,
                                        DataLayout layout) {
58 59 60 61
  auto& pool = paddle::platform::DeviceContextPool::Instance();
  VLOG(3) << "DataLayoutTransform src_layout: " << tensor.layout()
          << " dst_layout: " << layout;
  if (platform::is_cpu_place(tensor.place())) {
62 63
    auto* dev_ctx = static_cast<phi::CPUContext*>(pool.Get(tensor.place()));
    return phi::TransferLayout(*dev_ctx, tensor, layout);
64
  } else {
65
    PADDLE_THROW(phi::errors::PreconditionNotMet(
66 67 68 69 70
        "Unsupported data layout cast from CPU to GPU."));
  }
}

template <typename Context>
71 72 73
phi::DenseTensor CastDateType(const Context& dev_ctx,
                              const phi::DenseTensor& tensor,
                              DataType dtype) {
74 75
  switch (tensor.dtype()) {
    case DataType::FLOAT32:
76
      return phi::Cast<float>(dev_ctx, tensor, dtype);
77
    case DataType::FLOAT64:
78
      return phi::Cast<double>(dev_ctx, tensor, dtype);
79
    case DataType::INT32:
80
      return phi::Cast<int32_t>(dev_ctx, tensor, dtype);
81
    case DataType::INT64:
82
      return phi::Cast<int64_t>(dev_ctx, tensor, dtype);
83
    case DataType::FLOAT16:
84
      return phi::Cast<phi::dtype::float16>(dev_ctx, tensor, dtype);
85
    case DataType::BFLOAT16:
86
      return phi::Cast<phi::dtype::bfloat16>(dev_ctx, tensor, dtype);
87
    case DataType::BOOL:
88
      return phi::Cast<bool>(dev_ctx, tensor, dtype);
89
    case DataType::INT16:
90
      return phi::Cast<int16_t>(dev_ctx, tensor, dtype);
91
    case DataType::UINT8:
92
      return phi::Cast<uint8_t>(dev_ctx, tensor, dtype);
93
    default:
94
      PADDLE_THROW(phi::errors::Unimplemented(
95 96 97 98 99 100
          "Data type (%s) is not supported when casting data type.",
          tensor.dtype()));
  }
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
101 102 103
phi::DenseTensor CastDateType(const phi::GPUContext& dev_ctx,
                              const phi::DenseTensor& tensor,
                              DataType dtype) {
104 105
  switch (tensor.dtype()) {
    case DataType::FLOAT32:
106
      return phi::Cast<float>(dev_ctx, tensor, dtype);
107
    case DataType::FLOAT64:
108
      return phi::Cast<double>(dev_ctx, tensor, dtype);
109
    case DataType::INT32:
110
      return phi::Cast<int32_t>(dev_ctx, tensor, dtype);
111
    case DataType::INT64:
112
      return phi::Cast<int64_t>(dev_ctx, tensor, dtype);
113
    case DataType::FLOAT16:
114
      return phi::Cast<phi::dtype::float16>(dev_ctx, tensor, dtype);
115
    case DataType::BOOL:
116
      return phi::Cast<bool>(dev_ctx, tensor, dtype);
117
    case DataType::INT16:
118
      return phi::Cast<int16_t>(dev_ctx, tensor, dtype);
119
    case DataType::UINT8:
120
      return phi::Cast<uint8_t>(dev_ctx, tensor, dtype);
121
    default:
122
      PADDLE_THROW(phi::errors::Unimplemented(
123 124 125 126 127 128
          "Data type (%s) is not supported when casting data type.",
          tensor.dtype()));
  }
}
#endif

129 130
inline phi::DenseTensor TransDataType(const phi::DenseTensor& tensor,
                                      DataType dtype) {
131 132 133 134 135
  auto& pool = paddle::platform::DeviceContextPool::Instance();

  VLOG(3) << "DataTypeTransform src_dtype: " << tensor.dtype()
          << " dst_dtype: " << dtype;

136 137
  phi::DenseTensor out(
      phi::make_intrusive<paddle::experimental::SharedStorage>(tensor.place()),
138 139 140
      {dtype, tensor.dims(), tensor.layout()});

  if (platform::is_cpu_place(tensor.place())) {
141
    auto* dev_ctx = static_cast<phi::CPUContext*>(pool.Get(tensor.place()));
142 143 144
    return CastDateType(*dev_ctx, tensor, dtype);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  } else if (platform::is_gpu_place(tensor.place())) {
145
    auto* dev_ctx = static_cast<phi::GPUContext*>(pool.Get(tensor.place()));
146 147 148
    return CastDateType(*dev_ctx, tensor, dtype);
#endif
  } else {
149
    PADDLE_THROW(phi::errors::Unimplemented(
150 151 152 153 154
        "Place type is not supported when casting data type."));
  }
  return out;
}

155 156 157 158
phi::DenseTensor TransformData(const phi::DenseTensor& tensor,
                               const phi::TensorArgDef& target_args_def,
                               const TransformFlag& transform_flag) {
  phi::DenseTensor out = tensor;
159 160 161 162 163 164 165 166 167 168 169 170
  if (NeedTransformLayout(
          tensor.layout(), target_args_def.layout, transform_flag)) {
    out = TransDataLayout(out, target_args_def.layout);
  }

  if (NeedTransformDataType(
          tensor.dtype(), target_args_def.dtype, transform_flag)) {
    out = TransDataType(out, target_args_def.dtype);
  }

  if (NeedTransformPlace(
          out.place(), target_args_def.backend, transform_flag)) {
171
    phi::DenseTensor result;
172
    framework::TransDataDevice(
173
        out, phi::TransToPhiPlace(target_args_def.backend), &result);
174 175 176 177 178
    out = result;
  }
  return out;
}

179
std::shared_ptr<phi::DenseTensor> PrepareData(
180
    const Tensor& input,
181
    const phi::TensorArgDef& target_args_def,
182 183
    const TransformFlag& transform_flag) {
  const auto& tensor_in = input.impl();
Z
zyfncg 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  if (tensor_in) {
    phi::DenseTensor& dense_tensor =
        *static_cast<phi::DenseTensor*>(tensor_in.get());
    if (!transform_flag.NeedTransform() || !dense_tensor.initialized() ||
        (!NeedTransformPlace(
             dense_tensor.place(), target_args_def.backend, transform_flag) &&
         !NeedTransformDataType(
             dense_tensor.dtype(), target_args_def.dtype, transform_flag) &&
         !NeedTransformLayout(
             dense_tensor.layout(), target_args_def.layout, transform_flag))) {
      return std::static_pointer_cast<phi::DenseTensor>(tensor_in);
    }
    phi::DenseTensor out =
        TransformData(dense_tensor, target_args_def, transform_flag);
    return std::make_shared<phi::DenseTensor>(std::move(out));
199
  }
Z
zyfncg 已提交
200
  return nullptr;
201 202
}

203 204 205 206 207 208 209 210 211 212
std::shared_ptr<phi::DenseTensor> PrepareData(
    const paddle::optional<Tensor>& input,
    const phi::TensorArgDef& target_args_def,
    const TransformFlag& transform_flag) {
  if (input) {
    return PrepareData(*input, target_args_def, transform_flag);
  }
  return {nullptr};
}

H
hong 已提交
213 214 215 216 217 218 219 220 221 222 223
std::shared_ptr<phi::DenseTensor> PrepareData(
    const paddle::optional<const Tensor&> input,
    const phi::TensorArgDef& target_args_def,
    const TransformFlag& transform_flag) {
  if (input.get_ptr() != nullptr) {
    return PrepareData(*(input.get_ptr()), target_args_def, transform_flag);
  }

  return {nullptr};
}

224
std::unique_ptr<std::vector<phi::DenseTensor>> PrepareData(
225
    const std::vector<Tensor>& inputs,
226
    const phi::TensorArgDef& target_args_def,
227
    const TransformFlag& transform_flag) {
228
  auto pt_tensors = std::make_unique<std::vector<phi::DenseTensor>>();
229 230 231 232 233 234 235 236 237 238 239 240
  pt_tensors->reserve(inputs.size());

  for (const auto& input : inputs) {
    const auto& tensor_in = input.impl();
    if (!transform_flag.NeedTransform() || !tensor_in->initialized() ||
        (!NeedTransformPlace(
             tensor_in->place(), target_args_def.backend, transform_flag) &&
         !NeedTransformDataType(
             tensor_in->dtype(), target_args_def.dtype, transform_flag) &&
         !NeedTransformLayout(
             tensor_in->layout(), target_args_def.layout, transform_flag))) {
      pt_tensors->emplace_back(
241
          *std::dynamic_pointer_cast<phi::DenseTensor>(tensor_in));
242 243
    } else {
      pt_tensors->emplace_back(
244
          TransformData(*(static_cast<phi::DenseTensor*>(tensor_in.get())),
245 246 247 248 249 250 251 252 253 254
                        target_args_def,
                        transform_flag));
    }
  }

  return std::move(pt_tensors);
}

}  // namespace experimental
}  // namespace paddle