Matrix.h 55.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Yu Yang 已提交
17
#include <stdint.h>
Z
zhangjinchao01 已提交
18 19 20 21 22 23 24 25
#include <memory>
#include <thread>

#include "paddle/utils/Logging.h"
#include "paddle/utils/ThreadLocal.h"

#include <hl_gpu.h>

Y
Yu Yang 已提交
26
#include "BaseMatrix.h"
Z
zhangjinchao01 已提交
27 28
#include "MemoryHandle.h"
#include "Vector.h"
L
liaogang 已提交
29
#include "paddle/utils/Common.h"
Z
zhangjinchao01 已提交
30 31 32 33
#include "paddle/utils/ThreadLocal.h"

namespace paddle {

34
/// TODO(tianbing), move to paddle/function/TensorType.h
Z
zhangjinchao01 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
enum SparseValueType { NO_VALUE = 0, FLOAT_VALUE = 1 };

/**
 * @brief  matrix sparse_format .
 *
 * nnz represents nonzero number in sparse matrix.
 *
 * SPARSE_CSR: row major matrix. length of row is height_ + 1, each element
 * represents row start index in Matrix. length of col and value are nnz.
 *
 * SPARSE_CSC: col major matrix. length of col is width_ + 1, each element
 * represents col start index in Matrix. length of col and value are nnz.
 *
 * @code
 * for example: [0, 1, 0, 2, 0;
 *               1, 0, 0, 0, 0;
 *               0, 0, 0, 2, 5];
 * SPARSE_CSR row   [0, 2, 3, 5];
 *            col   [1, 3, 0, 3, 4];
 *            value [1, 2, 1, 2, 5]
 * SPARSE_CSC col   [0, 1, 2, 2, 4, 5];
 *            row   [1, 0, 0, 2, 2];
 *            value [1, 1, 2, 2, 5]
 * @endcode
 */
60
/// TODO(tianbing), move to paddle/function/TensorType.h
Z
zhangjinchao01 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
enum SparseFormat { SPARSE_CSR = 0, SPARSE_CSC = 1 };

class Matrix;
class GpuMatrix;
class CpuMatrix;
class CpuSparseMatrix;
class GpuSparseMatrix;
typedef std::shared_ptr<Matrix> MatrixPtr;
typedef std::shared_ptr<GpuMatrix> GpuMatrixPtr;
typedef std::shared_ptr<CpuMatrix> CpuMatrixPtr;
typedef std::shared_ptr<GpuSparseMatrix> GpuSparseMatrixPtr;
typedef std::shared_ptr<CpuSparseMatrix> CpuSparseMatrixPtr;

/**
 * Copy or assignemnt constructor will share the data as opposed to making a
 * copy of the original data. To make a copy of the orinal data, use copyFrom()
 * instead.
 */
class Matrix : public BaseMatrix {
protected:
81 82 83 84
  Matrix(MemoryHandlePtr memHandle,
         size_t height,
         size_t width,
         bool trans,
Z
zhangjinchao01 已提交
85 86 87 88
         bool use_gpu);

  Matrix(real* data, size_t height, size_t width, bool trans, bool use_gpu);

89 90 91 92 93
  Matrix(real* data,
         size_t height,
         size_t width,
         size_t stride,
         bool trans,
Z
zhangjinchao01 已提交
94 95 96 97 98 99 100 101 102 103 104
         bool use_gpu);

  static ThreadLocal<MatrixPtr> tmpMat_;

public:
  size_t elementCnt_;  // maximal number of elements which can be held in data_
  MemoryHandlePtr memoryHandle_;

public:
  virtual ~Matrix() {}

105 106 107 108 109 110 111 112 113 114 115 116
  static MatrixPtr create(MemoryHandlePtr memHandle,
                          size_t height,
                          size_t width,
                          bool trans = false);
  static MatrixPtr create(size_t height,
                          size_t width,
                          bool trans = false,
                          bool useGpu = false);
  static MatrixPtr create(real* data,
                          size_t height,
                          size_t width,
                          bool trans = false,
Z
zhangjinchao01 已提交
117
                          bool useGpu = false);
118 119 120 121 122
  static MatrixPtr create(real* data,
                          size_t height,
                          size_t width,
                          size_t stride,
                          bool trans = false,
Z
zhangjinchao01 已提交
123 124
                          bool useGpu = false);

125 126 127
  static MatrixPtr createSparseMatrix(size_t height,
                                      size_t width,
                                      size_t nnz,
Z
zhangjinchao01 已提交
128
                                      SparseValueType valueType = FLOAT_VALUE,
129 130 131 132 133
                                      bool trans = false,
                                      bool useGpu = false);
  static MatrixPtr createSparseMatrix(size_t height,
                                      size_t width,
                                      size_t nnz,
Z
zhangjinchao01 已提交
134 135
                                      SparseValueType valueType = FLOAT_VALUE,
                                      SparseFormat foramt = SPARSE_CSR,
136 137 138 139 140 141 142 143
                                      bool trans = false,
                                      bool useGpu = false);

  static MatrixPtr createSparseMatrix(real* data,
                                      int* row,
                                      int* col,
                                      size_t height,
                                      size_t width,
Z
zhangjinchao01 已提交
144 145
                                      size_t nnz, /* used to allocate space */
                                      SparseValueType valueType, /*value type*/
146 147
                                      SparseFormat format,
                                      bool trans,
Z
zhangjinchao01 已提交
148 149 150
                                      bool useGpu);

  static void resizeOrCreateSparseMatrix(
151 152 153 154 155 156 157 158 159 160 161 162 163 164
      MatrixPtr& matrix,
      size_t height,
      size_t width,
      size_t nnz,
      SparseValueType valueType = FLOAT_VALUE,
      SparseFormat foramt = SPARSE_CSR,
      bool trans = false,
      bool useGpu = false);

  static void resizeOrCreate(MatrixPtr& a,
                             size_t height,
                             size_t width,
                             bool trans = false,
                             bool useGpu = false);
Z
zhangjinchao01 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

  /**
   * @brief  set the data buffer used to hold the matrix data.
   *
   * caller should make sure that the size of data is at least
   * sizeof(real)*height*width.
   */
  void setData(real* data) {
    BaseMatrix::setData(data);
    memoryHandle_.reset();
  }

  /// the data should be contiguous
  void setData(real* data, size_t newHeight, size_t newWidth) {
    setData(data);
    height_ = newHeight;
    width_ = newWidth;
    elementCnt_ = newHeight * newWidth;
    stride_ = width_;
  }

  size_t getWidth() const { return width_; }
  size_t getHeight() const { return height_; }
  size_t getStride() const { return stride_; }
  size_t getElementCnt() const { return elementCnt_; }
  virtual real* getData() { return data_; }
  virtual const real* getData() const { return data_; }
  bool isTransposed() const { return trans_; }
  bool isContiguous() const { return stride_ == width_ || height_ == 1; }

  // If sparse matrix, need to dynamic_cast to CpuSparseMatrix/GpuSparseMatrix
  // befor call the following functions.
  // Declare these functions in the base class just easy to call them.
  // And these declarations should be moved to base class of sparse matrix
  // if refactor sparse matrix
  virtual int* getRows() const {
    LOG(FATAL) << "Not implemented";
202
    return nullptr;  //! suppress warning for no return value.
Z
zhangjinchao01 已提交
203 204 205 206
  }

  virtual int* getCols() const {
    LOG(FATAL) << "Not implemented";
207
    return nullptr;  //! suppress warning for no return value.
Z
zhangjinchao01 已提交
208 209 210 211 212 213 214 215 216
  }

  virtual SparseFormat getFormat() const {
    LOG(FATAL) << "Not implemented";
    return SPARSE_CSR;  //! suppress warning for no return value.
  }

  virtual SparseValueType getValueType() const {
    LOG(FATAL) << "Not implemented";
217
    return NO_VALUE;  //! suppress warning for no return value.
Z
zhangjinchao01 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
  }

  /**
   * @brief matrix elment-wise add
   *
   * Named add3 just because add/add2 has been used in BaseMatrix.cu
   * and they are not virtual function.
   */
  virtual void add3(MatrixPtr b) { LOG(FATAL) << "Not implemented"; }

  MemoryHandlePtr getMemoryHandle() const { return memoryHandle_; }

  virtual void zeroMem() { LOG(FATAL) << "Not implemented"; }

  virtual void resetOne() { LOG(FATAL) << "Not implemented"; }

234
  void setDiag(real value);
235

Z
zhangjinchao01 已提交
236 237 238 239 240 241
  virtual void copyFrom(const Matrix& src) { LOG(FATAL) << "Not implemented"; }

  virtual void trimFrom(const CpuSparseMatrix& src) {
    LOG(FATAL) << "Not implemented";
  }

242 243
  // For GpuMatrix this is an asynchronous copy interface
  // For CpuMatrix this is an synchronous copy interface
Z
zhangjinchao01 已提交
244 245 246 247
  virtual void copyFrom(const Matrix& src, hl_stream_t stream) {
    LOG(FATAL) << "Not implemented";
  }

248 249 250
  MatrixPtr subMatrix(size_t startRow,
                      size_t endRow,
                      size_t startCol,
Z
zhangjinchao01 已提交
251 252 253 254 255 256 257 258 259 260 261 262
                      size_t endCol);

  MatrixPtr subRowMatrix(size_t startRow, size_t endRow) {
    return subMatrix(startRow, endRow, 0, getWidth());
  }

  MatrixPtr subColMatrix(size_t startCol, size_t endCol) {
    return subMatrix(0, getHeight(), startCol, endCol);
  }

  virtual MatrixPtr subMatrix(size_t startRow, size_t numRows) {
    CHECK_LE(startRow + numRows, getHeight());
263 264 265 266 267
    return Matrix::create(getData() + startRow * getWidth(),
                          numRows,
                          getWidth(),
                          trans_,
                          useGpu_);
Z
zhangjinchao01 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
  }
  virtual MatrixPtr subMatrix(size_t startRow, size_t numRows, MatrixPtr dest) {
    CHECK_LE(startRow + numRows, getHeight());
    CHECK_EQ(useGpu_, dest->useGpu_);
    dest->setData(this->rowBuf(startRow), numRows, getWidth());
    return dest;
  }

  /**
   * If this is GpuMatrix, src is assumed to be CPU memory
   *
   * If this is CpuMatrix, src is assumed to be CPU memory
   */
  virtual void copyFrom(const real* src, size_t size) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void copyFrom(const real* src, const int64_t* seq) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @brief convert a int vector to a real matrix.
   *
   * (1) source and dest are both in CPU.
   *
   * (2) sizes are exactly match.
   */
  virtual void copyFrom(const IVector& src) {
    LOG(FATAL) << "copy data from int vector only available on CpuMatrix.";
  }

300
  virtual void copyByRowIndex(Matrix& b, const IVector& rowIndex) {
Z
zhangjinchao01 已提交
301 302 303 304 305 306 307 308 309 310 311
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @brief Create a matrix with the same type (GpuMatrix, CpuMatrix,
   *        NonValueSparseMatrix, etc.) as this.
   *
   * If height and width is zero, the new matrix will have the same size
   * as this, otherwise the new matrix will have the specified size.
   *
   */
312 313
  virtual MatrixPtr clone(size_t height = 0,
                          size_t width = 0,
Z
zhangjinchao01 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
                          bool useGpu = false) {
    LOG(FATAL) << "Not implemented";
    return nullptr;
  }

  virtual real* getRowBuf(size_t row) {
    LOG(FATAL) << "Not implemented";
    return nullptr;
  }

  virtual real getElement(size_t x, size_t y) const {
    LOG(FATAL) << "Not implemented";
    return 0;
  }

  virtual real getSum() {
    LOG(FATAL) << "Not implemented";
    return 0;
  }

  virtual void accumulateColSum(Matrix& src) {
    LOG(FATAL) << "Not implemented";
  }

  virtual real getAbsSum() {
    LOG(FATAL) << "Not implemented";
    return 0;
  }

  /**
   * @note Original data may not be preserved after resize().
   */
  virtual void resize(size_t newHeight, size_t newWidth) = 0;

  /**
   * @note This should only be used for sparse matrix.
   */
351 352
  virtual void resize(size_t newHeight,
                      size_t newWidth,
Z
zhangjinchao01 已提交
353
                      size_t newNnz, /* total item used to allocate space */
354 355
                      SparseValueType valueType,
                      SparseFormat format) = 0;
Z
zhangjinchao01 已提交
356 357 358 359 360 361 362

  /**
   * @brief This should only be used for sparse matrix.
   *
   * Currently must be called for each row in order.
   * The matrix is not valid until setRow is called for the last row.
   */
363 364 365
  virtual void setRow(size_t row,
                      size_t colNum,
                      const unsigned int* cols,
Z
zhangjinchao01 已提交
366 367 368 369 370 371 372 373 374 375
                      const real* values) = 0;

  virtual MatrixPtr getTranspose() = 0;

  /**
   * @brief  hard transpose.
   *
   * allocate matTrans' memory outside, then set memAlloc as false;
   * else set as true.
   */
376 377 378 379 380
  virtual void transpose(MatrixPtr& matTrans, bool memAlloc) {
    LOG(FATAL) << "Not implemented";
  }

  /**
H
Haonan 已提交
381 382 383 384 385 386 387 388 389 390 391
   * @brief  rotate 90 degrees in clock-wise if clockWise=true;
   *         otherwise rotate in anti clock-wise
   * clock-wise:
   * \f[
   *   y(j,i) = x(M-i-1,j)
   * \f]
   * anti clock-wise:
   * \f[
   *   y(j,i) = x(i, N-1-j)
   * \f]
   * where \f$x\f$ is (M x N) input, and \f$y\f$ is (N x M) output.
392
   *
H
Haonan 已提交
393
   * allocate matRot' memory outside, then set memAlloc as false;
394 395 396
   * else set as true.
   */
  virtual void rotate(MatrixPtr& matRot, bool memAlloc, bool clockWise) {
Z
zhangjinchao01 已提交
397 398 399
    LOG(FATAL) << "Not implemented";
  }

L
lzhao4ever 已提交
400 401
  virtual MatrixPtr getInverse() {
    LOG(FATAL) << "Not implemented";
402
    return nullptr;
L
lzhao4ever 已提交
403 404 405 406 407 408 409 410
  }

  /**
   * @brief  inverse.
   *
   * if allocate matInv's memory outside, then set memAlloc as false;
   * else set as true.
   */
411
  virtual void inverse(MatrixPtr& matInv, bool memAlloc) {
L
lzhao4ever 已提交
412 413 414
    LOG(FATAL) << "Not implemented";
  }

Z
zhangjinchao01 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
public:
  /// Only set all variables to 0 or NULL but not free them.
  virtual void clear() {
    height_ = 0;
    width_ = 0;
    data_ = NULL;
  }

  void reshape(size_t height, size_t width);

  /// add b to each sample of this.
  virtual void addBias(Matrix& b, real scale) {
    LOG(FATAL) << "Not implemented";
  }

430 431 432 433
  virtual void addSharedBias(Matrix& b, real scale) {
    LOG(FATAL) << "Not implemented";
  }

H
hedaoyuan 已提交
434
  void addBias(Matrix& b, real scale, bool sharedBias) {
435 436 437 438 439 440 441
    if (!sharedBias) {
      addBias(b, scale);
    } else {
      addSharedBias(b, scale);
    }
  }

Z
zhangjinchao01 已提交
442 443 444 445 446
  /// add each sample from a to this.
  virtual void collectBias(Matrix& a, real scale) {
    LOG(FATAL) << "Not implemented";
  }

447 448 449 450
  virtual void collectSharedBias(Matrix& a, real scale) {
    LOG(FATAL) << "Not implemented";
  }

H
hedaoyuan 已提交
451
  void collectBias(Matrix& a, real scale, bool sharedBias) {
452 453 454 455 456 457 458
    if (!sharedBias) {
      collectBias(a, scale);
    } else {
      collectSharedBias(a, scale);
    }
  }

459 460 461
  virtual void sequenceAvgForward(Matrix& a,
                                  const IVector& startsPos,
                                  int mode) {
Z
zhangjinchao01 已提交
462 463 464
    LOG(FATAL) << "Not implemented";
  }

L
Luo Tao 已提交
465 466 467 468 469 470
  virtual void sequenceAvgBackward(Matrix& a,
                                   const IVector& startsPos,
                                   int mode) {
    LOG(FATAL) << "Not implemented";
  }

Z
zhangjinchao01 已提交
471 472 473 474 475
  /**
   * @code
   * this = scaleAB*(a*b) + scaleT*this
   * @endcode
   */
476 477
  virtual void mul(const Matrix& a,
                   const Matrix& b,
478
                   real scaleAB,
Z
zhangjinchao01 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
                   real scaleT) {
    LOG(FATAL) << "Not implemented";
  }

  /// Add a vector (column) b to matrix a, column by column.
  virtual void addColumnVector(const Matrix& b) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * For j < codeLength:
   *   this(i, j) += vec(index(i, j), 0)
   * where index(i, j) = ((codes(i) + numClasses) >> (j + 1)) - 1
   * @endcode
   */
495 496
  virtual void addByBitCode(size_t numClasses,
                            const IVector& codes,
Z
zhangjinchao01 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510
                            const Matrix& vec) {
    (void)numClasses;
    (void)codes;
    (void)vec;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength:
   *   vec(index(i, j), 0) += this(i, j)
   * where index is same as the index for addByBitCode
   * @endcode
   */
511 512
  virtual void addByBitCodeBackward(size_t numClasses,
                                    const IVector& codes,
Z
zhangjinchao01 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526
                                    Matrix& vec) {
    (void)numClasses;
    (void)codes;
    (void)vec;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength:
   *   this(i, j) += <mat.row(index(i, j)), input.row(i)>
   * where index is same as the index for addByBitCode
   * @endcode
   */
527 528 529 530
  virtual void mulByBitCode(size_t numClasses,
                            const IVector& codes,
                            const Matrix& mat,
                            const Matrix& input) {
Z
zhangjinchao01 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
    (void)numClasses;
    (void)codes;
    (void)mat;
    (void)input;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength:
   *   mat.row(index(i, j)) += this(i, j) * input.row(i)
   * where index is same as the index for addByBitCode
   * @endcode
   */
  virtual void mulByBitCodeBackwardWeight(size_t numClasses,
546 547
                                          const IVector& codes,
                                          Matrix& mat,
Z
zhangjinchao01 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
                                          const Matrix& input) {
    (void)numClasses;
    (void)codes;
    (void)mat;
    (void)input;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength:
   *   input.row(i) += this(i, j) * mat.row(index(i, j))
   * where index is same as the index for addByBitCode
   * @endcode
   */
  virtual void mulByBitCodeBackwardError(size_t numClasses,
                                         const IVector& codes,
565 566
                                         const Matrix& mat,
                                         Matrix& input) {
Z
zhangjinchao01 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580
    (void)numClasses;
    (void)codes;
    (void)mat;
    (void)input;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength
   *   sum(i, 0) = scaleSum * \sum_j  bit(i, j) * this(i, j)
   * where bit(i, j) = ((codes(i) + numClasses) & 2^j) ? 1 : 0
   * @endcode
   */
581 582 583
  virtual void sumByBitCode(size_t numClasses,
                            IVector& codes,
                            Matrix& sum,
Z
zhangjinchao01 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
                            real scaleSum) {
    (void)numClasses;
    (void)codes;
    (void)sum;
    (void)scaleSum;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * For j < codeLength
   *  this(i, j) -= bit(i, j)
   * where bit(i, j) is same as that for sumByBitCode
   * @endcode
   */
  virtual void subByBitCode(size_t numClasses_, IVector& codes) {
    (void)numClasses_;
    (void)codes;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * add the sum of each row of this to mat
   */
  virtual void rowSum(Matrix& sum) {
    (void)sum;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * set the max of each row of this to mat
   */
  virtual void rowMax(Matrix& max) {
    (void)max;
    LOG(FATAL) << "Not implemeted";
  }

621 622 623
  /**
   * set the max of each column of this to mat
   */
Z
zhangjinchao01 已提交
624 625
  virtual void colMax(Matrix& max) { LOG(FATAL) << "not implemented"; }

626 627 628 629 630 631 632 633 634 635 636
  /**
   * @brief Get the top k elements of each column of this matrix.
   *
   * The row ids and values of these elements are stored in
   * maxIds and max respectively. where k is the size of maxIds.
   * And note that the top k elements are not sorted.
   */
  virtual void colMax(IVector& maxIds, Matrix& maxVal) {
    LOG(FATAL) << "not implemented";
  }

637 638 639
  virtual void maxoutForward(Matrix& a,
                             IVector& id,
                             size_t channels,
640 641 642 643
                             size_t groups) {
    LOG(FATAL) << "not implemented";
  }

644 645 646
  virtual void maxoutBackward(Matrix& a,
                              IVector& id,
                              size_t channels,
647 648 649 650
                              size_t groups) {
    LOG(FATAL) << "not implemented";
  }

Z
zhangjinchao01 已提交
651 652 653 654 655 656
  virtual void rowMaxId(IVector& maxIds) { LOG(FATAL) << "Not implemented"; }

  /**
   * @brief Get the top k elements of each row of this matrix.
   *
   * The column ids and values of these elements are stored in
657 658
   * maxIds and max respectively. where k is the size of maxIds.
   * And note that the top k elements are not sorted.
Z
zhangjinchao01 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
   */
  virtual void rowMax(IVector& maxIds, Matrix& max) {
    LOG(FATAL) << "Not implemented";
  }

  /// normalize each row so that the sum of each row is 1.
  virtual void rowNormalizeL1(Matrix& out) {
    (void)out;
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   *  this = a*b
   * @endcode
   */
675
  virtual void mul(const Matrix& a, const Matrix& b) {
Z
zhangjinchao01 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this = scaleAB*(this*b) +  scaleT*this
   * @endcode
   */
  virtual void rightMul(Matrix& b, real scaleAB, real scaleT) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this = this* b
   * @endcode
   */
  virtual void rightMul(Matrix& b) { LOG(FATAL) << "Not implemented"; }

  /**
   * @code
   * this = scaleAB*(a*this) +  scaleT*this
   * @endcode
   */
  virtual void leftMul(Matrix& a, real scaleAB, real scaleT) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this = a*this)
   * @endcode
   */
  virtual void leftMul(Matrix& a) { LOG(FATAL) << "Not implemented"; }

  /// merge the element for each col.
  virtual void colMerge(Matrix& src) { LOG(FATAL) << "Not implemented"; }

  /// copy -log(output[label]) to this->data[i].
  virtual void oneHotCrossEntropy(Matrix& output, IVector& label) {
    LOG(FATAL) << "Not implemented";
  }

  /// calculate the error of outputV according to label.
  virtual void oneHotCrossEntropyBp(Matrix& outputV, IVector& label) {
    LOG(FATAL) << "Not implemented";
  }

  /// copy -log(output[label]) to this->data[i].
725 726
  virtual void oneHotCrossEntropyWithSelfNorm(Matrix& output,
                                              IVector& label,
Z
zhangjinchao01 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
                                              real alpha) {
    LOG(FATAL) << "Not implemented";
  }

  /// calculate the error of outputV according to label.
  virtual void oneHotCrossEntropyWithSelfNormBp(Matrix& outputV,
                                                IVector& label,
                                                real alpha) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * \f[
   *  a[i] = \sum_{j=-(N-1)/2}^{(N-1)/2} b_{i+j} * c_{j}
   * \f]
742
   *
Z
zhangjinchao01 已提交
743 744 745 746 747 748 749 750 751
   * b contains M elements,
   * c contains N elements (N is odd),
   * b's index arithmetic is computed modulo M,
   * c's index arithmetic is computed modulo N.
   */
  virtual void circularConv(Matrix& b, Matrix& c) {
    LOG(FATAL) << "Not implemented";
  }

752 753 754 755
  virtual void circularConvDerivative(Matrix& output,
                                      Matrix& prevOut1,
                                      Matrix& prevOut2,
                                      Matrix& prevGrad1,
Z
zhangjinchao01 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
                                      Matrix& prevGrad2) {
    LOG(FATAL) << "Not implemented";
  }

  /* output_ij = exp(this_{ij}) / (sum_j exp(this_ij)) */
  virtual void softmax(Matrix& output) {
    (void)output;
    LOG(FATAL) << "Not implemeted";
  }
  virtual void sequenceSoftmax(Matrix& output, const IVector& index) {
    (void)output;
    LOG(FATAL) << "Not implemeted";
  }

  virtual void softmaxBackward(Matrix& outputV) {
    (void)outputV;
    LOG(FATAL) << "Not implemeted";
  }

  /*
    sum_i = sum_j this_ij * output_ij
    this_ij = output_ij* (this_ij - sum_i)
  */
  virtual void softmaxDerivative(Matrix& output, Matrix& sftmaxSum) {
    LOG(FATAL) << "Not implemented";
  }

  /// calculate the sum of squares diff cost.
  virtual void sumOfSquares(Matrix& output, Matrix& label) {
    LOG(FATAL) << "Not implemented";
  }

  /// gradient of sumOfSquares.
  virtual void sumOfSquaresBp(Matrix& outputV, Matrix& label) {
    LOG(FATAL) << "Not implemented";
  }

793
  virtual void smoothL1(Matrix& output, Matrix& label, real destScale) {
G
gaoyuan 已提交
794 795 796
    LOG(FATAL) << "Not implemented";
  }

797
  virtual void smoothL1Bp(Matrix& outputV, Matrix& label, real destScale) {
G
gaoyuan 已提交
798 799 800
    LOG(FATAL) << "Not implemented";
  }

Z
zhangjinchao01 已提交
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
  virtual void tanh(Matrix& output) { LOG(FATAL) << "Not implemented"; }

  virtual void tanhDerivative(Matrix& output) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void softrelu(Matrix& output) { LOG(FATAL) << "Not implemented"; }

  virtual void softreluDerivative(Matrix& output) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void scaledTanh(Matrix& output, real p1, real p2) {
    LOG(FATAL) << "Not implemented";
  }

  /// print out the values of elements to os
  virtual void print(std::ostream& os) const {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * print a part of the matrix
   * from the (top,left) value to the (height, width) value (not included)
   */
  virtual void print(std::ostream& os, size_t height, size_t width) const {
    LOG(FATAL) << "Not implemented";
  }

  /// print one row to os
  virtual void printOneRow(std::ostream& os, size_t idx) const {
    LOG(FATAL) << "Not implemented";
  }

  virtual void check(std::ostream& os, Matrix& refMat, bool printDiff = true) {}

  virtual real getMin() {
    LOG(FATAL) << "Not implemented";
    return 0;
  }
  virtual real getMax() {
    LOG(FATAL) << "Not implemented";
    return 0;
  }

  virtual void randomizeUniform() { LOG(FATAL) << "Not implemented"; }

  /**
   * @brief  calulate the error of classification
   *
   * output[i] = 1 if row i is an error.
   *
   * output[i] = 0 if row i is correct.
854
   *
Z
zhangjinchao01 已提交
855
   */
856 857 858
  virtual void classificationError(Matrix& output,
                                   IVector& label,
                                   size_t topkSize = 1) {
Z
zhangjinchao01 已提交
859 860 861 862 863 864 865 866 867
    LOG(FATAL) << "Not implemented";
  }

  /**
   * This function is used to calculate the convolution:
   *
   * It will expand a feature matrix according to the
   * convolution filters
   */
868 869 870 871 872 873 874 875 876 877 878 879
  virtual void convExpand(Matrix& feature,
                          int feaImgHeight,
                          int feaImgWidth,
                          int channels,
                          int blockH,
                          int blockW,
                          int strideH,
                          int strideW,
                          int paddingH,
                          int paddingW,
                          int outputH,
                          int outputW) {
Z
zhangjinchao01 已提交
880 881 882 883 884 885 886 887
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * This function is the reverse implementation of convExpand:
   *
   * Its function is to restore a expanded-matrix into a feature matrix
   */
888 889 890 891 892 893 894 895 896 897 898 899 900 901
  virtual void convShrink(Matrix& expandColMat,
                          int thisImgHeight,
                          int thisImgWidth,
                          int channels,
                          int blockH,
                          int blockW,
                          int strideH,
                          int strideW,
                          int paddingH,
                          int paddingW,
                          int outputH,
                          int outputW,
                          real alpha = 1.0f,
                          real beta = 0.0f) {
Z
zhangjinchao01 已提交
902 903 904 905 906 907 908
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * Pooling forward operation, pick out the largest element
   * in the sizeX of value
   */
909 910 911 912 913 914 915 916 917 918 919 920
  virtual void maxPoolForward(Matrix& inputMat,
                              size_t imgSizeH,
                              size_t imgSizeW,
                              size_t channels,
                              size_t sizeX,
                              size_t sizeY,
                              size_t strideH,
                              size_t strideW,
                              size_t outputH,
                              size_t outputW,
                              size_t paddingH,
                              size_t paddingW) {
Z
zhangjinchao01 已提交
921 922 923 924
    LOG(FATAL) << "Not implemeted";
  }

  /// Pooling backward operation.
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
  virtual void maxPoolBackward(Matrix& image,
                               size_t imgSizeH,
                               size_t imgSizeW,
                               Matrix& outGrad,
                               Matrix& outV,
                               size_t sizeX,
                               size_t sizeY,
                               size_t strideH,
                               size_t strideW,
                               size_t outputH,
                               size_t outputW,
                               real scaleTargets,
                               real scaleOutput,
                               size_t paddingH,
                               size_t paddingW) {
Z
zhangjinchao01 已提交
940 941 942 943
    LOG(FATAL) << "Not implemeted";
  }

  /// Pooling forward operation, caculate the average of sizeX elements.
944 945 946 947 948 949 950 951 952 953 954 955
  virtual void avgPoolForward(Matrix& input,
                              size_t imgSizeH,
                              size_t imgSizeW,
                              size_t channels,
                              size_t sizeX,
                              size_t sizeY,
                              size_t strideH,
                              size_t strideW,
                              size_t outputH,
                              size_t outputW,
                              size_t paddingH,
                              size_t paddingW) {
Z
zhangjinchao01 已提交
956 957 958
    LOG(FATAL) << "Not implemeted";
  }

959 960 961 962 963 964 965 966 967 968 969 970 971
  virtual void avgPoolBackward(Matrix& input,
                               size_t imgSizeH,
                               size_t imgSizeW,
                               size_t sizeX,
                               size_t sizeY,
                               size_t strideH,
                               size_t strideW,
                               size_t outputH,
                               size_t outputW,
                               real scaleTargets,
                               real scaleOutput,
                               size_t paddingH,
                               size_t paddingW) {
Z
zhangjinchao01 已提交
972 973 974 975 976 977 978 979 980 981 982
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * Input: one or more sequences. Each sequence contains some instances.
   *
   * Output: output size is the number of input sequences (NOT input
   * instances).
   *
   * output[i] is set to max_input[i].
   */
983 984
  virtual void maxSequenceForward(Matrix& input,
                                  const IVector& sequence,
Z
zhangjinchao01 已提交
985 986 987 988
                                  IVector& index) {
    LOG(FATAL) << "Not implemeted";
  }

989 990
  virtual void maxSequenceBackward(Matrix& outputGrad,
                                   const IVector& sequence,
Z
zhangjinchao01 已提交
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
                                   IVector& index) {
    LOG(FATAL) << "Not implemeted";
  }

  /**
   * @code
   * this.row[i] += table.row[ids[i]]
   * if ids[i] == -1, it will be ignored
   * @endcode
   */
  virtual void selectRows(Matrix& table, IVector& ids) {
    (void)table;
    (void)ids;
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * this[i] = table[i, id[i]]
   * @endcode
   */
  virtual void selectElements(Matrix& table, IVector& ids) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * table.row[ids[i]] += this.row[i]
   * if ids[i] == -1, it will be ignored
   * @endcode
   */
  virtual void addToRows(Matrix& table, IVector& ids) {
    (void)table;
    (void)ids;
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @code
   * table[i, id[i]] += this[i]
   * @endcode
   */
  virtual void addElements(Matrix& table, IVector& ids) {
    LOG(FATAL) << "Not implemented";
  }
  /**
   * @brief  cross entropy for multi binary labels
   *
   * @code
   * this[i] = -sum(label[i][j]*log(output[i][j])
   *           + (1-label[i][j])*log(1-output[i][j]))
1042
   * @endcode
Z
zhangjinchao01 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
   */
  virtual void multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @brief  The gradient of cross entropy for multi binary labels on output
   *
   * @code
   * this[i][j] = -label[i][j]/output[i][j]
   *              + (1-label[i][j])/(1-output[i][j])
1054
   * @endcode
Z
zhangjinchao01 已提交
1055 1056 1057 1058 1059 1060 1061
   */
  virtual void multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label) {
    LOG(FATAL) << "Not implemented";
  }

  /**
   * @brief  Calculate the classification error for multi binary labels
1062
   *
Z
zhangjinchao01 已提交
1063 1064 1065 1066
   * @code
   * this[i] = sum((output[i][j] >= threshold && label[i][j] == 0)
   *            || (output[i][j] < threshold && label[i][j] == 1))
   *            / output->getWidth()
1067
   * @endcode
Z
zhangjinchao01 已提交
1068
   */
1069 1070
  virtual void classificationErrorMulti(Matrix& output,
                                        Matrix& label,
Z
zhangjinchao01 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
                                        real threshold) {
    LOG(FATAL) << "Not implemented";
  }

  virtual void paramReluForward(Matrix& data, Matrix& W) {
    LOG(FATAL) << "Not implemented";
  }
  virtual void paramReluBackwardW(Matrix& oGrad, Matrix& data) {
    LOG(FATAL) << "Not implemented";
  }
  virtual void paramReluBackwardDiff(Matrix& oGrad, Matrix& data, Matrix& W) {
    LOG(FATAL) << "Not implemented";
  }
H
hedaoyuan 已提交
1084

L
liaogang 已提交
1085 1086 1087 1088 1089
  virtual void bilinearForward(const Matrix& in,
                               const size_t inImgH,
                               const size_t inImgW,
                               const size_t outImgH,
                               const size_t outImgW,
L
liaogang 已提交
1090 1091 1092
                               const size_t numChannels,
                               const real ratioH,
                               const real ratioW) {
L
liaogang 已提交
1093 1094 1095 1096 1097 1098 1099
    LOG(FATAL) << "Not implemented";
  }
  virtual void bilinearBackward(const Matrix& out,
                                const size_t outImgH,
                                const size_t outImgW,
                                const size_t inImgH,
                                const size_t inImgW,
L
liaogang 已提交
1100 1101 1102
                                const size_t numChannels,
                                const real ratioH,
                                const real ratioW) {
L
liaogang 已提交
1103 1104
    LOG(FATAL) << "Not implemented";
  }
1105 1106

  template <typename ExpressionType>
H
hedaoyuan 已提交
1107 1108 1109 1110 1111 1112 1113
  void operator=(const ExpressionType& expr) {
    if (useGpu_) {
      TensorGpuApply<real>(*this, expr);
    } else {
      TensorCpuApply<real>(*this, expr);
    }
  }
1114 1115 1116 1117

  bool isEmpty() const { return data_ == nullptr; }

  explicit operator bool() const { return !isEmpty(); }
Z
zhangjinchao01 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
};

inline std::ostream& operator<<(std::ostream& os, const Matrix& mat) {
  mat.print(os);
  return os;
}

class GpuMatrix : public Matrix {
public:
  GpuMatrix();

  GpuMatrix(size_t height, size_t width, bool trans = false);
  GpuMatrix(real* data, size_t height, size_t width, bool trans = false)
      : Matrix(data, height, width, trans, true) {}
1132 1133 1134 1135
  GpuMatrix(real* data,
            size_t height,
            size_t width,
            size_t stride,
Z
zhangjinchao01 已提交
1136 1137
            bool trans = false)
      : Matrix(data, height, width, stride, trans, true) {}
1138 1139 1140
  GpuMatrix(GpuMemHandlePtr dataHandle,
            size_t height,
            size_t width,
Z
zhangjinchao01 已提交
1141 1142 1143 1144 1145 1146
            bool trans = false)
      : Matrix(dataHandle, height, width, trans, true) {}
  ~GpuMatrix();

  void zeroMem();
  void resetOne();
1147
  void setDiag(real value);
Z
zhangjinchao01 已提交
1148 1149

  void resize(size_t newHeight, size_t newWidth);
1150 1151
  void resize(size_t newHeight,
              size_t newWidth,
Z
zhangjinchao01 已提交
1152
              size_t newNnz, /* used to allocate space */
1153 1154
              SparseValueType valueType,
              SparseFormat format) {
Z
zhangjinchao01 已提交
1155 1156
    LOG(FATAL) << "Only Support Sparse Matrix";
  }
1157 1158 1159
  void setRow(size_t row,
              size_t colNum,
              const unsigned int* cols,
Z
zhangjinchao01 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
              const real* values) {
    LOG(FATAL) << "Only Support Sparse Matrix";
  }

  /**
   * Copy the data from cpu_memory buffer
   */
  void copyFrom(const real* hostSrc, size_t size);

  void copyFrom(const real* hostSrc, const int64_t* seq);

  void copyFrom(const Matrix& src, hl_stream_t stream);

  void copyFrom(const Matrix& src);

  void copyFrom(const IVector& src);

1177
  void copyByRowIndex(Matrix& b, const IVector& rowIndex);
Z
zhangjinchao01 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

  MatrixPtr clone(size_t height, size_t width, bool useGpu = false);

  real getElement(size_t x, size_t y) const;

  real* getRow(size_t row) { return BaseMatrix::rowBuf(row); }
  virtual real* getRowBuf(size_t row) { return getRow(row); }

  real getSum();
  void accumulateColSum(Matrix& src);
  real getAbsSum();

1190 1191 1192
  real getMin();
  real getMax();

Z
zhangjinchao01 已提交
1193
  MatrixPtr getTranspose();
1194 1195
  void transpose(MatrixPtr& matTrans, bool memAlloc);
  void rotate(MatrixPtr& matRot, bool memAlloc, bool clockWise);
Z
zhangjinchao01 已提交
1196

L
lzhao4ever 已提交
1197
  MatrixPtr getInverse();
1198
  void inverse(MatrixPtr& matInv, bool memAlloc);
L
lzhao4ever 已提交
1199

Z
zhangjinchao01 已提交
1200 1201
  /// add b to each sample of this.
  void addBias(Matrix& b, real scale);
1202
  void addSharedBias(Matrix& b, real scale);
Z
zhangjinchao01 已提交
1203 1204 1205 1206 1207 1208 1209

  /**
   * @code
   * add each sample from a to this.
   * @endcode
   */
  void collectBias(Matrix& a, real scale);
1210
  void collectSharedBias(Matrix& a, real scale);
Z
zhangjinchao01 已提交
1211 1212

  void sequenceAvgForward(Matrix& a, const IVector& startsPos, int mode);
L
Luo Tao 已提交
1213
  void sequenceAvgBackward(Matrix& a, const IVector& startsPos, int mode);
Z
zhangjinchao01 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

  /**
   * @code
   * this.row[i] += table.row[ids[i]]
   * @endcode
   */
  virtual void selectRows(Matrix& table, IVector& ids);

  /**
   * @code
   * this[i] = table[i, id[i]]
   * @endcode
   */
  virtual void selectElements(Matrix& table, IVector& ids);

  /**
   * @code
   * table.row[ids[i]] += this.row[i]
   * @endcode
   */
  virtual void addToRows(Matrix& table, IVector& ids);

  void addColumnVector(const Matrix& b);

  /**
   * @code
   * this = scaleAB*(a*b) + scaleT*this
   * @endcode
   */
1243
  void mul(const Matrix& a, const Matrix& b, real scaleAB, real scaleT);
Z
zhangjinchao01 已提交
1244 1245 1246 1247 1248 1249

  /**
   * @code
   * this = a*b
   * @endcode
   */
1250
  void mul(const Matrix& a, const Matrix& b);
Z
zhangjinchao01 已提交
1251 1252 1253

  void mul(const GpuMatrix& a, const GpuMatrix& b, real scaleAB, real scaleT);

1254 1255 1256
  void mul(const GpuSparseMatrix& a,
           const GpuMatrix& b,
           real scaleAB,
Z
zhangjinchao01 已提交
1257 1258
           real scaleT);

1259 1260 1261
  void mul(const GpuMatrix& a,
           const GpuSparseMatrix& b,
           real scaleAB,
Z
zhangjinchao01 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
           real scaleT);

  /**
   * @code
   * this = scaleAB*(this*b) +  scaleT*this
   * @endcode
   */
  void rightMul(Matrix& b, real scaleAB, real scaleT);

  /**
   * @code
   * this = this* b
   * @endcode
   */
  void rightMul(Matrix& b);

  /**
   * @code
   * this = scaleAB*(a*this) +  scaleT*this
   * @endcode
   */
  void leftMul(Matrix& a, real scaleAB, real scaleT);

  /**
   * @code
   * this = a*this
   * @endcode
   */
  void leftMul(Matrix& a);

  void colMerge(Matrix& src);
  void rowSum(Matrix& sum);
  void rowMax(Matrix& max);
  void rowMax(IVector& maxIds, Matrix& max);
  void colMax(Matrix& max);
1297 1298 1299
  void colMax(IVector& maxIds, Matrix& max);
  void maxoutForward(Matrix& a, IVector& id, size_t channels, size_t groups);
  void maxoutBackward(Matrix& a, IVector& id, size_t channels, size_t groups);
Z
zhangjinchao01 已提交
1300 1301 1302

  void oneHotCrossEntropy(Matrix& output, IVector& label);
  void oneHotCrossEntropyBp(Matrix& outputV, IVector& label);
1303 1304
  void oneHotCrossEntropyWithSelfNorm(Matrix& output,
                                      IVector& label,
Z
zhangjinchao01 已提交
1305
                                      real alpha);
1306 1307
  void oneHotCrossEntropyWithSelfNormBp(Matrix& outputV,
                                        IVector& label,
Z
zhangjinchao01 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
                                        real alpha);

  void softmax(Matrix& output);
  void sequenceSoftmax(Matrix& output, const IVector& index);
  void softmaxBackward(Matrix& outputV);
  void softmaxDerivative(Matrix& output, Matrix& sftmaxSum);

  /// calculate the sum of squares diff cost.
  void sumOfSquares(Matrix& output, Matrix& label);

  /// gradient of sumOfSquares.
  void sumOfSquaresBp(Matrix& outputV, Matrix& label);
  void tanh(Matrix& output);
  void tanhDerivative(Matrix& output);
  void softrelu(Matrix& output);
  void softreluDerivative(Matrix& output);
  void scaledTanh(Matrix& output, real p1, real p2);

  virtual void print(std::ostream& os) const;
  virtual void print(std::ostream& os, size_t height, size_t width) const;

  void paramReluForward(Matrix& data, Matrix& W);
  void paramReluBackwardW(Matrix& oGrad, Matrix& data);
  void paramReluBackwardDiff(Matrix& oGrad, Matrix& data, Matrix& W);

  void check(std::ostream& os, Matrix& refMat, bool printDiff = true);
  void randomizeUniform();

1336
  void classificationError(Matrix& output, IVector& label, size_t topkSize = 1);
Z
zhangjinchao01 已提交
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
  void convExpand(Matrix& feature,
                  int feaImgHeight,
                  int feaImgWidth,
                  int channels,
                  int blockH,
                  int blockW,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  int outputH,
                  int outputW);

  void convShrink(Matrix& expandColMat,
                  int thisImgHeight,
                  int thisImgWidth,
                  int channels,
                  int blockH,
                  int blochW,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingWreal,
                  int outputH,
                  int outputW,
                  real alpha = 1.0f,
                  real beta = 0.0f);

  void maxPoolForward(Matrix& inputMat,
                      size_t imgSizeH,
                      size_t imgSizeW,
                      size_t channels,
                      size_t sizeX,
                      size_t sizeY,
                      size_t strideH,
                      size_t strideW,
                      size_t outputH,
                      size_t outputW,
                      size_t paddingH,
                      size_t paddingW);

  void maxPoolBackward(Matrix& image,
                       size_t imgSizeH,
                       size_t imgSizeW,
                       Matrix& outGrad,
                       Matrix& outV,
                       size_t sizeX,
                       size_t sizeY,
                       size_t strideH,
                       size_t strideW,
                       size_t outputH,
                       size_t outputW,
                       real scaleTargets,
                       real scaleOutput,
                       size_t paddingH,
                       size_t paddingW);

  void avgPoolForward(Matrix& input,
                      size_t imgSizeH,
                      size_t imgSizeW,
                      size_t channels,
                      size_t sizeX,
                      size_t sizeY,
                      size_t strideH,
                      size_t strideW,
                      size_t outputH,
                      size_t outputW,
                      size_t paddingH,
                      size_t paddingW);

  void avgPoolBackward(Matrix& input,
                       size_t imgSizeH,
                       size_t imgSizeW,
                       size_t sizeX,
                       size_t sizeY,
                       size_t strideH,
                       size_t strideW,
                       size_t outputH,
                       size_t outputW,
                       real scaleTargets,
                       real scaleOutput,
                       size_t paddingH,
                       size_t paddingW);

  void maxSequenceForward(Matrix& input,
                          const IVector& sequence,
Z
zhangjinchao01 已提交
1424 1425
                          IVector& index);

1426 1427
  void maxSequenceBackward(Matrix& outputGrad,
                           const IVector& sequence,
Z
zhangjinchao01 已提交
1428 1429
                           IVector& index);

L
liaogang 已提交
1430 1431 1432 1433 1434
  void bilinearForward(const Matrix& in,
                       const size_t inImgH,
                       const size_t inImgW,
                       const size_t outImgH,
                       const size_t outImgW,
L
liaogang 已提交
1435 1436 1437
                       const size_t numChannels,
                       const real ratioH,
                       const real ratioW);
L
liaogang 已提交
1438 1439 1440 1441 1442 1443

  void bilinearBackward(const Matrix& out,
                        const size_t outImgH,
                        const size_t outImgW,
                        const size_t inImgH,
                        const size_t inImgW,
L
liaogang 已提交
1444 1445 1446
                        const size_t numChannels,
                        const real ratioH,
                        const real ratioW);
1447 1448 1449 1450

  void multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label);

  void multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label);
1451 1452

  template <typename ExpressionType>
H
hedaoyuan 已提交
1453 1454 1455
  void operator=(const ExpressionType& expr) {
    TensorGpuApply<real>(*this, expr);
  }
Z
zhangjinchao01 已提交
1456 1457 1458
};

class CpuMatrix : public Matrix {
1459 1460 1461 1462
private:
  MatrixPtr sftmaxSum_;
  MatrixPtr sftmaxDot_;

Z
zhangjinchao01 已提交
1463 1464 1465 1466
public:
  CpuMatrix(size_t height, size_t width, bool trans = false);
  CpuMatrix(real* data, size_t height, size_t width, bool trans = false)
      : Matrix(data, height, width, trans, false) {}
1467 1468 1469 1470
  CpuMatrix(real* data,
            size_t height,
            size_t width,
            size_t stride,
Z
zhangjinchao01 已提交
1471 1472 1473
            bool trans = false)
      : Matrix(data, height, width, stride, trans, false) {}

1474 1475 1476
  CpuMatrix(CpuMemHandlePtr dataHandle,
            size_t height,
            size_t width,
Z
zhangjinchao01 已提交
1477 1478 1479 1480 1481 1482 1483
            bool trans = false)
      : Matrix(dataHandle, height, width, trans, false) {}

  ~CpuMatrix();

  void zeroMem();
  void resetOne();
1484 1485
  void setDiag(real value);

Z
zhangjinchao01 已提交
1486
  void resize(size_t newHeight, size_t newWidth);
1487 1488
  void resize(size_t newHeight,
              size_t newWidth,
Z
zhangjinchao01 已提交
1489
              size_t newNnz, /* used to allocate space */
1490 1491
              SparseValueType valueType,
              SparseFormat format) {
Z
zhangjinchao01 已提交
1492 1493
    LOG(FATAL) << "Only Support Sparse Matrix";
  }
1494 1495 1496
  void setRow(size_t row,
              size_t colNum,
              const unsigned int* cols,
Z
zhangjinchao01 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
              const real* values) {
    LOG(FATAL) << "Only Support Sparse Matrix";
  }

  real getElement(size_t x, size_t y) const;
  real getSum();
  void accumulateColSum(Matrix& src);
  real getAbsSum();

  MatrixPtr getTranspose();
1507 1508
  void transpose(MatrixPtr& matTrans, bool memAlloc);
  void rotate(MatrixPtr& matRot, bool memAlloc, bool clockWise);
Z
zhangjinchao01 已提交
1509

L
lzhao4ever 已提交
1510
  MatrixPtr getInverse();
1511
  void inverse(MatrixPtr& matInv, bool memAlloc);
L
lzhao4ever 已提交
1512

Z
zhangjinchao01 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
  void copyFrom(const Matrix& src);

  void copyFrom(const Matrix& src, hl_stream_t stream);

  void copyFrom(const real* cpuSrc, size_t size);

  void copyFrom(const real* cpuSrc, const int64_t* seq);

  void copyFrom(const IVector& src);

  void copyFrom(CpuSparseMatrix& src);

1525
  void copyByRowIndex(Matrix& b, const IVector& rowIndex);
Z
zhangjinchao01 已提交
1526 1527 1528

  MatrixPtr clone(size_t height, size_t width, bool useGpu = false);

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
  void convExpand(Matrix& feature,
                  int feaImgHeight,
                  int feaImgWidth,
                  int channels,
                  int blcokH,
                  int blockW,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  int outputH,
                  int outputW);

  void convShrink(Matrix& expandFeat,
                  int thisImgHeight,
                  int thisImgWidth,
                  int channels,
                  int blockH,
                  int blockW,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  int outputH,
                  int outputW,
                  real alpha = 1.0f,
                  real beta = 0.0f);

  void maxPoolForward(Matrix& inputMat,
                      size_t imgSizeH,
                      size_t imgSizeW,
                      size_t channels,
                      size_t sizeX,
                      size_t sizeY,
                      size_t strideH,
                      size_t strideW,
                      size_t outputH,
                      size_t outputW,
                      size_t paddingH,
                      size_t paddingW);

  void maxPoolBackward(Matrix& image,
                       size_t imgSizeH,
                       size_t imgSizeW,
                       Matrix& outGrad,
                       Matrix& outV,
                       size_t sizeX,
                       size_t sizeY,
                       size_t strideH,
                       size_t strideW,
                       size_t outputH,
                       size_t outputW,
                       real scaleTargets,
                       real scaleOutput,
                       size_t paddingH,
                       size_t paddingW);

  void avgPoolForward(Matrix& input,
                      size_t imgSizeH,
                      size_t imgSizeW,
                      size_t channels,
                      size_t sizeX,
                      size_t sizeY,
                      size_t strideH,
                      size_t strideW,
                      size_t outputH,
                      size_t outputW,
                      size_t paddingH,
                      size_t paddingW);

  void avgPoolBackward(Matrix& input,
                       size_t imgSizeH,
                       size_t imgSizeW,
                       size_t sizeX,
                       size_t sizeY,
                       size_t strideH,
                       size_t strideW,
                       size_t outputH,
                       size_t outputW,
                       real scaleTargets,
                       real scaleOutput,
                       size_t paddingH,
                       size_t paddingW);

  void maxSequenceForward(Matrix& input,
                          const IVector& sequence,
Z
zhangjinchao01 已提交
1615 1616
                          IVector& index);

1617 1618
  void maxSequenceBackward(Matrix& outputGrad,
                           const IVector& sequence,
Z
zhangjinchao01 已提交
1619 1620 1621 1622 1623 1624 1625 1626
                           IVector& index);

  real* getRow(size_t row) { return BaseMatrix::rowBuf(row); }
  virtual real* getRowBuf(size_t row) { return getRow(row); }

public:
  /// add b to each sample of this.
  void addBias(Matrix& b, real scale);
1627
  void addSharedBias(Matrix& b, real scale);
Z
zhangjinchao01 已提交
1628 1629 1630

  /// add each sample of a to this.
  void collectBias(Matrix& a, real scale);
1631
  void collectSharedBias(Matrix& a, real scale);
Z
zhangjinchao01 已提交
1632 1633

  void sequenceAvgForward(Matrix& a, const IVector& startsPos, int mode);
L
Luo Tao 已提交
1634
  void sequenceAvgBackward(Matrix& a, const IVector& startsPos, int mode);
Z
zhangjinchao01 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

  /**
   * @code
   * this.row[i] += table.row[ids[i]]
   * @endcode
   */
  virtual void selectRows(Matrix& table, IVector& ids);

  /**
   * @code
   * table.row[ids[i]] += this.row[i]
   * @endcode
1647
   */
Z
zhangjinchao01 已提交
1648 1649 1650 1651 1652 1653
  virtual void addToRows(Matrix& table, IVector& ids);

  /**
   * @code
   * this[i] = table[i, id[i]]
   * @endcode
1654
   */
Z
zhangjinchao01 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
  virtual void selectElements(Matrix& table, IVector& ids);

  /**
   * @code
   * table[i, id[i]] += this[i]
   * @endcode
   */
  virtual void addElements(Matrix& table, IVector& ids);

  /**
   * use abstract getRow() to get row from table.
   *
   * Define table as template instead of virtual class for performance sake.
   * internal used by above two virtual funcs.
   */
  template <typename TableMatType>
  void selectRowsImp(TableMatType& table, IVector& ids);
  template <typename TableMatType>
  void addToRowsImp(TableMatType& table, IVector& ids);

  void addColumnVector(const Matrix& b);

1677
  void mul(const Matrix& a, const Matrix& b, real scaleAB, real scaleT);
Z
zhangjinchao01 已提交
1678 1679 1680 1681
  void mul(CpuMatrix* a, CpuMatrix* b, real scaleAB, real scaleT);

  void mul(CpuMatrix* a, CpuSparseMatrix* b, real scaleAB, real scaleT);

1682 1683 1684 1685
  static void mul(CpuMatrix* a,
                  CpuMatrix* b,
                  CpuSparseMatrix* c,
                  real scaleAB,
Z
zhangjinchao01 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694
                  real scaleT);

  /**
   * c = a * b
   *
   * use abstract getRow() to get row from B,C.
   * Define B,C as template instead of virtual class for performance sake.
   */
  template <typename MatBType, typename MatCType>
1695 1696
  static void mul(
      CpuSparseMatrix* a, MatBType* b, MatCType* c, real scaleAB, real scaleT);
Z
zhangjinchao01 已提交
1697 1698 1699

  virtual void mul(CpuSparseMatrix* a, CpuMatrix* b, real scaleAB, real scaleT);

1700
  void mul(const Matrix& a, const Matrix& b);
Z
zhangjinchao01 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

  void rightMul(Matrix& b, real scaleAB, real scaleT);
  void rightMul(Matrix& b);

  void leftMul(Matrix& a, real scaleAB, real scaleT);
  void leftMul(Matrix& a);
  void colMerge(Matrix& src);
  void rowSum(Matrix& sum);
  void rowMaxId(IVector& maxIds);
  void rowMax(Matrix& max);
  void rowMax(IVector& maxIds, Matrix& maxVal);
  void colMax(Matrix& max);
1713 1714 1715
  void colMax(IVector& maxIds, Matrix& maxVal);
  void maxoutForward(Matrix& a, IVector& id, size_t channels, size_t groups);
  void maxoutBackward(Matrix& a, IVector& id, size_t channels, size_t groups);
Z
zhangjinchao01 已提交
1716 1717 1718 1719
  void rowNormalizeL1(Matrix& out);

  void oneHotCrossEntropy(Matrix& output, IVector& label);
  void oneHotCrossEntropyBp(Matrix& outputV, IVector& label);
1720 1721
  void oneHotCrossEntropyWithSelfNorm(Matrix& output,
                                      IVector& label,
Z
zhangjinchao01 已提交
1722
                                      real alpha);
1723 1724
  void oneHotCrossEntropyWithSelfNormBp(Matrix& outputV,
                                        IVector& label,
Z
zhangjinchao01 已提交
1725 1726 1727
                                        real alpha);

  void circularConv(Matrix& b, Matrix& c);
1728 1729 1730 1731
  void circularConvDerivative(Matrix& output,
                              Matrix& prevOut1,
                              Matrix& prevOut2,
                              Matrix& prevGrad1,
Z
zhangjinchao01 已提交
1732 1733 1734
                              Matrix& prevGrad2);

  void softmax(Matrix& output);
1735
  void softmaxBackward(Matrix& outputV);
Z
zhangjinchao01 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744
  void sequenceSoftmax(Matrix& output, const IVector& index);
  void softmaxDerivative(Matrix& output, Matrix& sftmaxSum);

  /// calculate the sum of squares diff cost.
  void sumOfSquares(Matrix& output, Matrix& label);

  /// gradient of sumOfSquares.
  void sumOfSquaresBp(Matrix& outputV, Matrix& label);

1745 1746
  void smoothL1(Matrix& output, Matrix& label, real destScale);
  void smoothL1Bp(Matrix& output, Matrix& label, real destScale);
G
gaoyuan 已提交
1747

Z
zhangjinchao01 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
  void tanh(Matrix& output);
  void tanhDerivative(Matrix& output);

  void softrelu(Matrix& output);
  void softreluDerivative(Matrix& output);
  void scaledTanh(Matrix& output, real p1, real p2);

  void print(std::ostream& os) const;
  void print(std::ostream& os, size_t height, size_t width) const;
  void printOneRow(std::ostream& os, size_t idx) const;

  void paramReluForward(Matrix& data, Matrix& W);
  void paramReluBackwardW(Matrix& oGrad, Matrix& data);
  void paramReluBackwardDiff(Matrix& oGrad, Matrix& data, Matrix& W);

  void check(std::ostream& os, Matrix& refMat, bool printDiff = true);

  real getMin();
  real getMax();

  void randomizeUniform();

1770
  void classificationError(Matrix& output, IVector& label, size_t topkSize = 1);
Z
zhangjinchao01 已提交
1771 1772 1773

  void addByBitCode(size_t numClasses, const IVector& codes, const Matrix& vec);

1774 1775
  void addByBitCodeBackward(size_t numClasses,
                            const IVector& codes,
Z
zhangjinchao01 已提交
1776 1777
                            Matrix& vec);

1778 1779 1780
  void mulByBitCode(size_t numClasses,
                    const IVector& codes,
                    const Matrix& mat,
Z
zhangjinchao01 已提交
1781 1782
                    const Matrix& input);

1783 1784 1785 1786
  void mulByBitCodeBackwardWeight(size_t numClasses,
                                  const IVector& codes,
                                  Matrix& mat,
                                  const Matrix& input);
Z
zhangjinchao01 已提交
1787

1788 1789 1790 1791
  void mulByBitCodeBackwardError(size_t numClasses,
                                 const IVector& codes,
                                 const Matrix& mat,
                                 Matrix& input);
Z
zhangjinchao01 已提交
1792

1793 1794 1795
  void sumByBitCode(size_t numClasses,
                    IVector& codes,
                    Matrix& sum,
Z
zhangjinchao01 已提交
1796 1797 1798 1799 1800 1801 1802
                    real scaleSum);

  void subByBitCode(size_t numClasses_, IVector& codes);

  void multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label);
  void multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label);
  void classificationErrorMulti(Matrix& output, Matrix& label, real threshold);
H
hedaoyuan 已提交
1803

L
liaogang 已提交
1804 1805 1806 1807 1808
  void bilinearForward(const Matrix& in,
                       const size_t inImgH,
                       const size_t inImgW,
                       const size_t outImgH,
                       const size_t outImgW,
L
liaogang 已提交
1809 1810 1811
                       const size_t numChannels,
                       const real ratioH,
                       const real ratioW);
L
liaogang 已提交
1812 1813 1814 1815 1816 1817

  void bilinearBackward(const Matrix& out,
                        const size_t outImgH,
                        const size_t outImgW,
                        const size_t inImgH,
                        const size_t inImgW,
L
liaogang 已提交
1818 1819 1820
                        const size_t numChannels,
                        const real ratioH,
                        const real ratioW);
1821 1822

  template <typename ExpressionType>
H
hedaoyuan 已提交
1823 1824 1825
  void operator=(const ExpressionType& expr) {
    TensorCpuApply<real>(*this, expr);
  }
Z
zhangjinchao01 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834
};

class SharedCpuMatrix : public CpuMatrix {
public:
  /* blockNum is number of partitions of the matrix  */
  SharedCpuMatrix(int blockNum, size_t height, size_t width, bool trans = false)
      : CpuMatrix(height, width, trans) {
    initShared(blockNum);
  }
1835 1836
  SharedCpuMatrix(
      int blockNum, real* data, size_t height, size_t width, bool trans = false)
Z
zhangjinchao01 已提交
1837 1838 1839 1840
      : CpuMatrix(data, height, width, trans) {
    initShared(blockNum);
  }

1841 1842 1843 1844 1845
  SharedCpuMatrix(int blockNum,
                  CpuMemHandlePtr dataHandle,
                  size_t height,
                  size_t width,
                  bool trans = false)
Z
zhangjinchao01 已提交
1846 1847 1848 1849
      : CpuMatrix(dataHandle, height, width, trans) {
    initShared(blockNum);
  }

1850 1851 1852 1853
  SharedCpuMatrix(CpuMemHandlePtr dataHandle,
                  size_t height,
                  size_t width,
                  bool trans = false)
Z
zhangjinchao01 已提交
1854 1855 1856 1857 1858 1859 1860 1861
      : CpuMatrix(dataHandle, height, width, trans) {
    initBlock(1);
  }

  ~SharedCpuMatrix() {}

public:
  virtual void mul(CpuSparseMatrix* a, CpuMatrix* b, real scaleAB, real scaleT);
Y
Yu Yang 已提交
1862 1863
  virtual void add(Matrix& b, real p1, real p2);
  virtual void add(real p1, real p2);
Z
zhangjinchao01 已提交
1864 1865

private:
H
hedaoyuan 已提交
1866
  using Matrix::mul;
Z
zhangjinchao01 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
  void initShared(int blockNum);
  void initBlock(int blockNum);

  int blockNum_;
  std::vector<std::unique_ptr<std::mutex>> blockLocks_;
  ThreadLocal<CpuMatrixPtr> localBuf_;
  ThreadLocal<std::vector<int>> localBufRows_;
  ThreadLocal<std::vector<int>> blockSeq_;
};

typedef struct { unsigned int col; } sparse_non_value_t;

typedef struct {
  unsigned int col;
  float value;
} sparse_float_value_t;

}  // namespace paddle
#include "ExecViaCpu.h"