seq_expand_op.h 3.5 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/op_registry.h"
W
wanghaoshuang 已提交
18
#include "paddle/memory/memcpy.h"
W
wanghaoshuang 已提交
19
#include "unsupported/Eigen/CXX11/Tensor"
W
wanghaoshuang 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;

template <typename Place, typename T>
class SeqExpandKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
    const T* x_data = x->data<T>();
W
wanghaoshuang 已提交
33
    auto x_dims = x->dims();
W
wanghaoshuang 已提交
34 35 36 37 38 39 40
    auto* y = context.Input<LoDTensor>("Y");
    PADDLE_ENFORCE_EQ(x_dims[0], y->lod().back().size() - 1,
                      "The size of last lod level in Input(Y)"
                      "must be equal to dims[0] of Input(X).");
    out->set_lod(y->lod());
    out->Resize(y->dims());
    auto place = context.GetEigenDevice<Place>();
W
wanghaoshuang 已提交
41 42
    size_t element_len = framework::product(x_dims) / x_dims[0];
    T* out_data = out->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55
    auto out_starts = out->lod().back();

    for (size_t i = 0; i < out_starts.size() - 1; i++) {
      int scale = out_starts[i + 1] - out_starts[i];
      Eigen::TensorMap<
          Eigen::Tensor<const T, 2, Eigen::RowMajor, Eigen::DenseIndex>>
          x_t(x_data, 1, element_len);
      Eigen::TensorMap<Eigen::Tensor<T, 2, Eigen::RowMajor, Eigen::DenseIndex>>
          out_t(out_data, scale, element_len);
      Eigen::array<int, 2> cast({scale, 1});
      out_t.device(place) = x_t.broadcast(cast);
      x_data += element_len;
      out_data += element_len * scale;
W
wanghaoshuang 已提交
56
    }
W
wanghaoshuang 已提交
57 58 59 60 61 62 63
  }
};

template <typename Place, typename T>
class SeqExpandGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
W
wanghaoshuang 已提交
64 65 66
    auto* d_out = context.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* x = context.Input<LoDTensor>("X");
    auto* out = context.Input<LoDTensor>("Out");
W
wanghaoshuang 已提交
67
    auto* d_x = context.Output<LoDTensor>(framework::GradVarName("X"));
W
wanghaoshuang 已提交
68
    auto out_last_level = out->lod().back();
W
wanghaoshuang 已提交
69 70 71 72 73
    d_x->set_lod(x->lod());
    const T* d_out_data = d_out->data<T>();
    auto d_out_dims = d_out->dims();
    T* d_x_data = d_x->mutable_data<T>(context.GetPlace());
    size_t element_len = framework::product(d_out_dims) / d_out_dims[0];
W
wanghaoshuang 已提交
74 75 76 77 78 79 80 81

    for (size_t i = 0; i < out_last_level.size() - 1; ++i) {
      size_t repeat = out_last_level[i + 1] - out_last_level[i];
      Eigen::TensorMap<
          Eigen::Tensor<const T, 2, Eigen::RowMajor, Eigen::DenseIndex>>
      d_out_t(d_out_data, static_cast<int>(repeat), element_len);
      Eigen::TensorMap<Eigen::Tensor<T, 1, Eigen::RowMajor, Eigen::DenseIndex>>
      d_x_t(d_x_data, static_cast<int>(element_len));
W
wanghaoshuang 已提交
82
      auto place = context.GetEigenDevice<Place>();
83
      d_x_t.device(place) = d_out_t.sum(Eigen::array<int, 1>({{0}}));
W
wanghaoshuang 已提交
84 85
      d_out_data += (repeat * element_len);
      d_x_data += element_len;
W
wanghaoshuang 已提交
86
    }
W
wanghaoshuang 已提交
87 88 89 90 91
  }
};

}  // namespace operators
}  // namespace paddle