executor_thread_worker.h 8.0 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <map>
#include <memory>
#include <mutex>  // NOLINT
#include <set>
#include <string>
#include <thread>  // NOLINT
#include <vector>
#include "paddle/fluid/framework/data_feed.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
28
#include "pslib.h"
W
Wang Guibao 已提交
29 30 31

namespace paddle {
namespace framework {
32 33 34

const static uint32_t MAX_FEASIGN_NUM = 1000 * 100 * 100;

W
Wang Guibao 已提交
35 36
void CreateTensor(Variable* var, proto::VarType::Type var_type);

37
struct AsyncWorkerParamConfig {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
  int slot_dim;
  int fea_dim;
  int32_t tmp_push_dense_wait_times;
  int32_t tmp_push_sparse_wait_times;
  
  std::vector<std::string> skip_op;
  
  std::map<uint64_t, std::vector<std::string>> dense_variable_name;
  std::map<uint64_t, std::vector<std::string>> dense_gradient_variable_name;
  std::vector<int>               dense_table_id;
  // fea_dim for each dense table
  std::vector<uint32_t>          dense_table_size;
  std::vector<int>               sparse_table_id;
  std::map<uint64_t, std::vector<std::string>> slot_input_vec;
  std::map<uint64_t, std::vector<std::string>> gradient_var;
  std::map<std::string, uint64_t> slot_alias_to_table;
54 55 56 57 58 59 60 61 62 63 64 65
};

struct DensePullThreadParam {
    std::shared_ptr<paddle::ps::PSClient> ps_client;
    int threshold;
    int training_thread_num;
    Scope* root_scope;
    std::map<uint64_t, std::vector<std::string>>* dense_params;
    int sleep_time_ms = 2;
};

class DensePullThread {
66 67
 public:
  explicit DensePullThread(const DensePullThreadParam& param) :
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        _running(false) {
        _ps_client = param.ps_client;
        _threshold = param.threshold;
        _thread_num = param.training_thread_num;
        _root_scope = param.root_scope;
        _sleep_time_ms = param.sleep_time_ms;

        for (auto& t : *param.dense_params) {
            _dense_variable_name[t.first].insert(
                    _dense_variable_name[t.first].end(),
                    t.second.begin(), t.second.end());
            _training_versions[t.first].resize(_thread_num, 0);
            _last_versions[t.first] = 0;
            _current_version[t.first] = 0;
        }
    }

    int start();

    void stop() {
        if (_running) {
            _running = false;
            _t.join();
        }
    }

    void increase_thread_version(int thread_id, uint64_t table_id);
    void reset_thread_version(uint64_t table_id);
    std::future<int32_t> pull_dense(uint64_t table_id);
    void pull_dense2(uint64_t table_id);
    void wait_all();

100
 private:
101 102 103
    void run();
    bool check_update_param(uint64_t table_id);

104
 private:
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    std::shared_ptr<paddle::ps::PSClient> _ps_client;
    int _thread_num;
    int _threshold;
    int _sleep_time_ms;
    Scope* _root_scope;
    bool _running;

    std::map<uint64_t, uint64_t> _last_versions;
    std::map<uint64_t, uint64_t> _current_version;
    std::mutex  _mutex_for_version;
    std::map<uint64_t, std::vector<uint64_t>> _training_versions;
    std::map<uint64_t, std::vector<std::string>> _dense_variable_name;

    std::thread _t;

    std::vector<::std::future<int32_t>> _pull_dense_status;

    std::map<uint64_t, std::vector<paddle::ps::Region>> _regions;
    uint32_t    _pull_dense_fail_times = 0;

    std::vector<float>  _base_norm_param;
    std::vector<float>  _mean;
    std::vector<float>  _scale;
    float _squared_sum_epsilon = 1e-4;
    std::mutex _mutex_for_mean_scale;

    float _total_batch_num = 0;
};
W
Wang Guibao 已提交
133 134 135 136
class ExecutorThreadWorker {
 public:
  ExecutorThreadWorker()
      : thread_id_(-1), root_scope_(NULL), thread_scope_(NULL), debug_(false) {}
137
  virtual ~ExecutorThreadWorker() {}
W
Wang Guibao 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

  void CreateThreadResource(const framework::ProgramDesc& program,
                            const paddle::platform::Place& place);
  void SetThreadId(int tid);
  void SetDebug(const bool debug) { debug_ = debug; }
  void SetRootScope(Scope* g_scope);
  // set cpu device in this function
  // cpu binding is used by default
  void SetDevice();
  // since we read data into memory that can not be accessed by program
  // we need to bind memory of data with corresponding variables in program
  // this function should be called after data feed is set
  void BindingDataFeedMemory();
  // set data feed declared in executor
  void SetDataFeed(const std::shared_ptr<DataFeed>& datafeed);
  // A multi-thread training function
154
  virtual void TrainFiles();
W
Wang Guibao 已提交
155 156
  // set fetch variable names from python interface assigned by users
  void SetFetchVarNames(const std::vector<std::string>& fetch_var_names);
157
  virtual void SetPSlibPtr(
158
      std::shared_ptr<paddle::distributed::PSlib> pslib_ptr) {};
159 160 161 162 163
  virtual void SetPullDenseThread(
      std::shared_ptr<DensePullThread> dpt) {}
  virtual void SetParamConfig(
      AsyncWorkerParamConfig * param_config) {}

W
Wang Guibao 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
 private:
  void CreateThreadScope(const framework::ProgramDesc& program);
  void CreateThreadOperators(const framework::ProgramDesc& program);
  void SetMainProgram(const ProgramDesc& main_program_desc);
  void SetPlace(const paddle::platform::Place& place);

 protected:
  // thread index
  std::shared_ptr<DataFeed> thread_reader_;  // shared queue, thread buffer
  int thread_id_;
  // operator name
  std::vector<std::string> op_names_;
  // thread level, local operators for forward and backward
  std::vector<OperatorBase*> ops_;
  // main program for training
  std::unique_ptr<framework::ProgramDesc> main_program_;
  // execution place
  platform::Place place_;
  // root scope for model parameters
  Scope* root_scope_;
  // a thread scope, father scope is global score which is shared
  Scope* thread_scope_;
  std::vector<std::string> fetch_var_names_;
  std::vector<std::vector<float>> fetch_values_;
  bool debug_;
};

191
class AsyncExecutorThreadWorker: public ExecutorThreadWorker {
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
 public:
  AsyncExecutorThreadWorker() {}
  virtual ~AsyncExecutorThreadWorker() {}
  void SetPSlibPtr(std::shared_ptr<paddle::distributed::PSlib> pslib_ptr);
  void SetPullDenseThread(std::shared_ptr<DensePullThread> dpt);
  void SetParamConfig(AsyncWorkerParamConfig* param_config);
  void TrainFiles();
  void TrainOneNetwork();
  void PrepareParams();
  void UpdateParams();
  void PullSparse(int table_id);
  void FillSparse(int table_id);
  void PushSparse(int table_id);
  void PushDense(int table_id);
  
  void check_pull_push_memory(
      const std::vector<uint64_t>& features,
      std::vector<float*>& push_g,
      int dim);
  void check_pull_push_memory(const std::vector<uint64_t>& features,
                              std::vector<std::vector<float>>& push_g,
                              int dim);
214
    void collect_feasign_info(int table_id);
215 216

 private:
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    struct FeasignInfo {
        uint32_t slot;
        uint32_t ins;
        int64_t label;
    };

    std::map<uint64_t, std::vector<uint64_t>>       _features;
    std::map<uint64_t, std::vector<FeasignInfo>>    _fea_info;
    std::map<uint64_t, std::vector<std::vector<float>>> _feature_value;
    std::map<uint64_t, std::vector<std::vector<float>>> _feature_push_value;


    std::shared_ptr<paddle::distributed::PSlib>     _pslib_ptr;

    std::shared_ptr<DensePullThread>                _pull_dense_thread;

    std::vector<::std::future<int32_t>>             _pull_sparse_status;
    std::vector<::std::future<int32_t>>             _pull_dense_status;
    std::vector<::std::future<int32_t>>             _push_sparse_status;
    std::vector<::std::future<int32_t>>             _push_dense_status;

    AsyncWorkerParamConfig*                         _param_config;

};

W
Wang Guibao 已提交
242 243
}  // namespace framework
}  // namespace paddle