framework.py 71.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
21
import traceback
22

Y
Yu Yang 已提交
23
import numpy as np
Q
qiaolongfei 已提交
24

M
minqiyang 已提交
25
from .. import compat as cpt
26
from .proto import framework_pb2
27 28
try:
    from . import core
29
except ImportError as e:
30 31 32 33
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
34
    directory. The original error is: \n""" + cpt.get_exception_message(e))
35
except Exception as e:
36
    raise e
37
from . import unique_name
38 39
import os
PADDLE_ON_MODEL_CE = os.environ.get('PADDLE_ON_MODEL_CE', None) is not None
Y
Yu Yang 已提交
40

41
__all__ = [
42 43
    'Program',
    'Operator',
F
fengjiayi 已提交
44
    'Parameter',
45 46 47
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
48
    'get_var',
49
    'name_scope',
50
]
Y
Yu Yang 已提交
51

Q
qiaolongfei 已提交
52 53 54 55
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
56 57 58
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()


59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
             with name_scope("attention"):
                ...
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
123 124 125
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
126 127 128 129


def grad_var_name(var_name):
    """
130 131
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
132 133 134
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
135

136
def convert_np_dtype_to_dtype_(np_dtype):
137 138
    """
    Convert the data type in numpy to the data type in Paddle
139

140
    Args:
141
        np_dtype(np.dtype): the data type in numpy.
142

143 144
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
145 146

    """
147 148
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
149
        return core.VarDesc.VarType.FP32
150
    elif dtype == np.float64:
151
        return core.VarDesc.VarType.FP64
152
    elif dtype == np.float16:
153
        return core.VarDesc.VarType.FP16
154
    elif dtype == np.int32:
155
        return core.VarDesc.VarType.INT32
156
    elif dtype == np.int16:
157
        return core.VarDesc.VarType.INT16
158
    elif dtype == np.int64:
159
        return core.VarDesc.VarType.INT64
160
    elif dtype == np.bool:
161
        return core.VarDesc.VarType.BOOL
162 163
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
164 165
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
166 167
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
168
    else:
M
minqiyang 已提交
169
        raise ValueError("Not supported numpy dtype %s" % dtype)
170 171 172


def dtype_is_floating(dtype):
173 174 175
    """
    Check the data type is floating or not.
    Args:
176
        dtype(np.dtype|core.VarDesc.VarType): data type.
177 178 179 180 181
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
182
    if not isinstance(dtype, core.VarDesc.VarType):
183 184
        dtype = convert_np_dtype_to_dtype_(dtype)

185 186 187 188
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
189 190


Y
Yang Yang(Tony) 已提交
191
def _debug_string_(proto, throw_on_error=True):
192 193 194 195 196 197 198 199 200 201 202
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
203
    error_fields = list()
Y
Yang Yang(Tony) 已提交
204
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
205 206
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
207 208 209
    return proto.__str__()


Y
Yu Yang 已提交
210
class Variable(object):
211
    """
212 213 214
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
215
    two variables in different blocks could have the same name.
216

217 218
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
219

220
    Most of a Variable's member variables can be setted to be None. It mean
221
    it is not available or will be specified later.
222 223

    Args:
224
        block(Block): The block that the variable belongs to.
225 226
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
227 228
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
229
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
230
            Some kinds of variable do not contain shape, just set it to None.
231 232 233
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
234
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
235
            series data.
236
            Default: None
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
259 260
    """

Y
Yu Yang 已提交
261 262
    def __init__(self,
                 block,
Y
Yu Yang 已提交
263
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
264 265 266 267
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
268
                 capacity=None,
Q
QI JUN 已提交
269
                 persistable=None,
F
fengjiayi 已提交
270
                 error_clip=None,
Y
Yu Yang 已提交
271
                 stop_gradient=False,
F
fengjiayi 已提交
272
                 is_data=False,
Y
Yu Yang 已提交
273
                 **kwargs):
Y
Yu Yang 已提交
274
        self.block = block
F
fengjiayi 已提交
275
        self.error_clip = error_clip
Y
Yu Yang 已提交
276 277

        if name is None:
Y
Yu Yang 已提交
278
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
279
        is_new_var = False
M
minqiyang 已提交
280
        name = cpt.to_text(name)
M
minqiyang 已提交
281
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
282 283

        if self.desc is None:
M
minqiyang 已提交
284
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
285
            is_new_var = True
Y
Yu Yang 已提交
286

Y
Yu Yang 已提交
287 288 289 290 291 292 293 294
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
295
        if shape is not None:
Y
Yu Yang 已提交
296
            if is_new_var:
297
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
298 299 300 301 302 303 304 305
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
306
        if dtype is not None:
307
            if not isinstance(dtype, core.VarDesc.VarType):
308
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
309
            if is_new_var:
F
fengjiayi 已提交
310
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
311
            else:
F
fengjiayi 已提交
312
                old_dtype = self.dtype
Q
QI JUN 已提交
313
                if dtype != old_dtype:
Y
Yu Yang 已提交
314 315 316 317 318
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
319 320

        if lod_level is not None:
Y
Yu Yang 已提交
321
            if is_new_var:
322
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
323 324 325 326 327 328 329
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
330 331 332 333 334 335 336 337 338 339 340
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

341 342 343 344 345 346 347 348
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
349
        self.block.vars[name] = self
Y
Yu Yang 已提交
350
        self.op = None
Y
Yu Yang 已提交
351
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
352
        self.is_data = is_data
Y
Yu Yang 已提交
353

354
    def __str__(self):
Y
Yang Yang(Tony) 已提交
355 356
        return self.to_string(True)

F
update  
fengjiayi 已提交
357
    def to_string(self, throw_on_error, with_details=False):
358 359 360 361
        """
        Get debug string.

        Args:
362 363
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
364
            with_details(bool): more details about variables and parameters
365 366
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
367

368 369
        Returns:
            str: The debug string.
370
        """
F
update  
fengjiayi 已提交
371 372
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
373
        protostr = self.desc.serialize_to_string()
374
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
375 376 377 378
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
379 380
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
381
        return res_str
382 383 384

    __repr__ = __str__

W
Wu Yi 已提交
385
    def _set_desc(self, input):
386 387 388 389 390 391 392 393 394
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
395 396
        self.desc = input

397 398 399 400
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
401 402 403 404
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
405 406
    @property
    def name(self):
M
minqiyang 已提交
407
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
408

T
typhoonzero 已提交
409 410 411 412
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
413 414 415
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
416
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
417 418

    @property
F
fengjiayi 已提交
419 420
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
421 422 423

    @property
    def lod_level(self):
424
        return self.desc.lod_level()
Y
Yu Yang 已提交
425

Y
Yu Yang 已提交
426 427 428 429
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
430
    def _set_error_clip(self, error_clip):
431 432 433 434 435 436 437 438 439
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
440 441
        self.error_clip = error_clip

Y
Yu Yang 已提交
442

F
fengjiayi 已提交
443 444 445
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
446

447 448
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
449 450 451 452
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
453
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
454 455 456 457 458
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
459 460 461 462
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
463 464 465 466 467 468 469 470 471
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
472
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
473 474 475 476 477 478
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
479 480 481 482 483 484 485 486
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
487 488
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
489 490
        return self.op_proto_map[type]

491 492 493 494
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
495
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
Y
Yu Yang 已提交
496 497
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
498 499
        }

F
fengjiayi 已提交
500

Y
Yu Yang 已提交
501
class Operator(object):
502
    """
503 504 505 506 507 508 509
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
510
        type(str): The type of operator. Default None.
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
531
        Block.append_op or Block._prepend_op instead.
532 533 534 535 536 537 538 539 540 541

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
542
    """
543 544 545 546 547
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
tangwei12 已提交
548
        'channel_recv', 'select', 'checkpoint_notify', 'gen_nccl_id'
549
    }
550

Y
Yu Yang 已提交
551 552
    def __init__(self,
                 block,
Y
Yu Yang 已提交
553
                 desc,
Y
Yu Yang 已提交
554 555 556 557 558
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
559
        self.desc = desc
G
gongweibao 已提交
560 561 562 563 564
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
565 566 567 568
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
569 570
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
571 572 573

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
574 575
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
576

G
gongweibao 已提交
577 578
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
579

580 581 582 583
        if not PADDLE_ON_MODEL_CE:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]
584

F
fengjiayi 已提交
585 586 587 588 589
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
590
        self.desc.set_type(type)
F
fengjiayi 已提交
591
        proto = OpProtoHolder.instance().get_op_proto(type)
592

593 594 595
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
596 597
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
598
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
599 600
                    return True
            return False
Q
QI JUN 已提交
601

Y
Yang Yang(Tony) 已提交
602 603 604 605 606 607 608
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
609 610 611 612
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
613 614
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
615 616 617
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
618
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
619
                            in_arg_names.append(arg)
620 621
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
622
                        else:
M
minqiyang 已提交
623
                            in_arg_names.append(cpt.to_text(arg.name))
624
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
625 626
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
627

Y
Yu Yang 已提交
628
        if outputs is not None:
629 630 631 632 633 634 635
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
636 637
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
638 639 640
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
641

F
fengjiayi 已提交
642
            for out_proto in proto.outputs:
643 644 645 646
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
647 648
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
649 650 651
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
652
                    out_arg_names.append(cpt.to_text(arg.name))
653 654
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
655

G
gongweibao 已提交
656 657
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
658
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
659
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
660
                attr_name = attr.name
G
gongweibao 已提交
661
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
662
                    continue
G
gongweibao 已提交
663
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
664 665
                self._update_desc_attr(attr_name, attr_val)

666
        self.desc.check_attrs()
667
        if self.has_kernel(type):
Q
QI JUN 已提交
668
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
669
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
670

671 672 673
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
674
    def to_string(self, throw_on_error):
675
        """
676 677
        Get debug string.

678
        Args:
679 680
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
681

682 683
        Returns:
            str: The debug string.
684 685

        """
686
        protostr = self.desc.serialize_to_string()
687
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
688 689 690 691
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
692 693 694

    __repr__ = __str__

F
fengjiayi 已提交
695 696 697 698 699
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
700
        """
701
        Get the input arguments according to the input parameter name.
702

703 704
        Args:
            name(str): The input parameter name.
705

706 707 708
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
709
        """
F
fengjiayi 已提交
710 711
        return self.desc.input(name)

T
typhoonzero 已提交
712
    def rename_input(self, old_name, new_name):
713 714 715 716 717 718 719 720 721 722
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
723 724 725
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
726 727 728 729 730 731 732 733 734 735
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
736 737
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
738 739 740 741
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
742 743 744 745 746 747 748 749
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
750
    def output(self, name):
751
        """
752
        Get output arguments by the output parameter name.
753

754 755
        Args:
            name(str): The output parameter name.
756

757 758 759
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
760
        """
F
fengjiayi 已提交
761 762 763 764 765 766
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

767 768 769 770 771 772 773 774
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
775
    def has_attr(self, name):
776
        """
777 778
        Whether this Operator has the attribute with name or not.

779
        Args:
780
            name(str): the attribute name.
781

782 783
        Returns:
            bool: True if has this attribute.
784 785

        """
F
fengjiayi 已提交
786 787 788
        return self.desc.has_attr(name)

    def attr_type(self, name):
789
        """
790
        Get the type of attribute by attribute's name.
791

792 793
        Args:
            name(str): the attribute name.
794

795 796
        Returns:
            core.AttrType: the attribute type.
797
        """
F
fengjiayi 已提交
798 799
        return self.desc.attr_type(name)

Y
yuyang18 已提交
800
    def set_attr(self, name, val):
801 802 803 804 805 806 807 808 809 810
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
824 825
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
826 827
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
828
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
829 830 831 832 833
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
834

F
fengjiayi 已提交
835 836 837 838 839
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
840
        """
841 842
        Get the attribute by name.

843
        Args:
844
            name(str): the attribute name.
845

846 847
        Returns:
            bool|int|str|float|list: The attribute value. The return value
848 849
            can be any valid attribute type.
        """
F
fengjiayi 已提交
850
        return self.desc.attr(name)
Y
Yu Yang 已提交
851

G
gongweibao 已提交
852
    def block_attr_id(self, name):
853
        """
G
gongweibao 已提交
854
        Get the block attribute's id by name.
855

856 857
        Args:
            name(str): the attribute name.
858

859 860
        Returns:
            int: the block index.
861
        """
G
gongweibao 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
        return self.desc.block_attr_id(name)

    def block_attr(self, name):
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

        id = self.block_attr_id(name)
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

    def blocks_attr(self, name):
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
        for i in self.blocks_attr_ids(name):
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

    def blocks_attr_ids(self, name):
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

        return self.desc.blocks_attr_ids(name)
Y
Yu Yang 已提交
908

J
JiayiFeng 已提交
909
    def all_attrs(self):
F
fengjiayi 已提交
910
        """
911 912 913
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
914
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
915 916 917 918
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
919 920
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
F
fengjiayi 已提交
921
                attr_map[n] = self.block_attr(n)
G
gongweibao 已提交
922 923 924 925 926 927 928 929
                continue

            if attr_type == core.AttrType.BLOCKS:
                attr_map[n] = self.blocks_attr(n)
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
930 931
        return attr_map

Y
Yu Yang 已提交
932

Y
Yu Yang 已提交
933
class Block(object):
934 935 936 937 938 939 940 941 942 943 944 945 946 947
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
948
        use `Program._create_block()` to create a block.
949 950 951 952 953 954 955 956 957 958 959 960 961 962

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
963
    def __init__(self, program, idx):
Y
Yu Yang 已提交
964
        self.desc = program.desc.block(idx)
965
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
966
        self.ops = list()  # operator list
Y
Yu Yang 已提交
967
        self.program = program
968
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
969

970
    def __str__(self):
Y
Yang Yang(Tony) 已提交
971 972
        return self.to_string(True)

F
fengjiayi 已提交
973 974
    def to_string(self, throw_on_error, with_details=False):
        """
975 976
        Get debug string.

F
fengjiayi 已提交
977 978
        Args:
            throw_on_error(bool): raise exception when self is not initialized
979
                when throw_on_error is True.
F
update  
fengjiayi 已提交
980
            with_details(bool): more details about variables and parameters
981 982
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
983

984 985
        Returns:
            str: The debug string.
F
fengjiayi 已提交
986 987 988 989
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
990
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
991 992
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
993
            for var in list(self.vars.values()):
F
fengjiayi 已提交
994
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
995
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
996
            for op in self.ops:
F
fengjiayi 已提交
997 998
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
999 1000 1001
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1002 1003
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1004 1005
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1006 1007 1008

    __repr__ = __str__

Y
Yu Yang 已提交
1009 1010
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1011
        return self.desc.parent
Y
Yu Yang 已提交
1012

Y
Yu Yang 已提交
1013 1014 1015 1016
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1017
    def _set_forward_block_idx(self, idx):
1018 1019 1020 1021 1022 1023 1024 1025 1026
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1027
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1028

Y
Yu Yang 已提交
1029 1030
    @property
    def idx(self):
Y
Yu Yang 已提交
1031
        return self.desc.id
Y
Yu Yang 已提交
1032

Q
Qiao Longfei 已提交
1033
    def var(self, name):
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1047
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1048 1049 1050
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1051 1052
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1053
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1054
        return v
Q
Qiao Longfei 已提交
1055

W
Wu Yi 已提交
1056
    def _var_recursive(self, name):
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1096

Q
Qiao Longfei 已提交
1097
    def all_parameters(self):
1098
        return list(self.iter_parameters())
1099

1100
    def iter_parameters(self):
M
minqiyang 已提交
1101
        return (item[1] for item in six.iteritems(self.vars)
1102
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1103

Y
Yu Yang 已提交
1104
    def create_var(self, *args, **kwargs):
1105
        var = Variable(block=self, *args, **kwargs)
1106 1107
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1108
        return var
Y
Yu Yang 已提交
1109

Q
Qiao Longfei 已提交
1110 1111 1112
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1113
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1114 1115
        """
        Rename variable in vars and ops' inputs and outputs
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1128
        """
M
minqiyang 已提交
1129 1130
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1131

T
typhoonzero 已提交
1132
        if not self.has_var(name):
1133
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1134 1135
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1136
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1137 1138 1139 1140 1141 1142 1143
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1144
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1145 1146 1147 1148
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1149
        orig_var_type = v.type
M
minqiyang 已提交
1150
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1151
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1152
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1153
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1154 1155 1156 1157
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1158
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1159 1160 1161 1162 1163 1164 1165
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1166
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1167 1168
            var = Variable(
                self,
T
typhoonzero 已提交
1169
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1170 1171 1172 1173
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1174
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1175 1176 1177
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1178
        self._sync_with_cpp()
1179
        return var
T
typhoonzero 已提交
1180

W
Wu Yi 已提交
1181 1182
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1183
        self.desc._remove_var(cpt.to_bytes(name))
1184 1185
        del self.vars[name]

Y
Yu Yang 已提交
1186 1187
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1188
        param = Parameter(global_block, *args, **kwargs)
1189
        if 'initializer' in kwargs:
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1210
        return param
Y
Yu Yang 已提交
1211

Y
Yu Yang 已提交
1212
    def append_op(self, *args, **kwargs):
1213 1214 1215 1216 1217 1218
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1219
        op_desc = self.desc.append_op()
1220
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1221 1222 1223
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1224
    def _insert_op(self, index, *args, **kwargs):
1225 1226 1227 1228 1229 1230 1231 1232 1233
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1234 1235
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1236 1237 1238 1239
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1240
    def _remove_op(self, index):
1241 1242 1243 1244 1245 1246 1247 1248 1249
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1250 1251
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1252 1253
        del self.ops[index]

W
Wu Yi 已提交
1254
    def _slice_ops(self, start, end):
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1265
        return self.ops[start:end]
Y
Yancey1989 已提交
1266

W
Wu Yi 已提交
1267 1268
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1269
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1270
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1271 1272
        return op

W
Wu Yi 已提交
1273
    def _sync_with_cpp(self):
1274
        """
1275 1276
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1277
        """
Q
Qiao Longfei 已提交
1278 1279 1280 1281 1282
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1283
        # sync variables removed from c++ end
1284
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1285
            if not self.desc.find_var(cpt.to_bytes(var)):
1286 1287
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1288
        # sync operators from cpp
1289 1290 1291 1292
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1309 1310 1311 1312 1313

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1314
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1315 1316 1317 1318 1319 1320 1321

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1335 1336 1337 1338
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1339
    def _copy_param_info_from(self, other):
1340
        """
1341 1342
        Copy the information of parameters from the other block.

1343
        Args:
1344 1345 1346 1347 1348
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1349 1350 1351 1352 1353

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1354 1355
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1356
        for p in other.iter_parameters():
1357 1358 1359
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1360
                raise ValueError("_copy_param_info_from should be invoked with "
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1373
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1374
                error_clip=p.error_clip,
1375 1376 1377
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1378
    def _clone_variable(self, var):
1379 1380
        """
        Clone a variable into current block.
1381

1382 1383 1384 1385
        Args:
            var: the variable to be cloned.

        Returns:
1386
            Variable: the new  variable cloned from 'var' in current block.
1387 1388
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1389 1390 1391 1392 1393
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1394 1395
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1396
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1397 1398 1399 1400 1401 1402
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1403 1404
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1405 1406 1407 1408 1409 1410 1411
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1412 1413
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1414
        return ret_var
1415

Y
Yu Yang 已提交
1416 1417

class Program(object):
D
dzhwinter 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1429
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1430 1431

    Returns:
Y
yuyang18 已提交
1432
        A empty program.
D
dzhwinter 已提交
1433 1434

    Examples:
Y
yuyang18 已提交
1435 1436 1437 1438 1439 1440
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1441 1442 1443

    """

1444 1445
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1446 1447
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1448
        self._seed = 0
Y
yuyang18 已提交
1449
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1450
        self._op_role_var = []
T
tangwei12 已提交
1451 1452 1453 1454

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1455
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1456 1457
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1458 1459 1460

    @property
    def op_role(self):
Y
yuyang18 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1474 1475 1476 1477 1478 1479 1480 1481
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1482 1483 1484 1485 1486 1487 1488
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1489 1490 1491 1492
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1493
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1494 1495

    @contextlib.contextmanager
W
Wu Yi 已提交
1496
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1497 1498 1499 1500 1501 1502 1503
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1504
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1505 1506 1507 1508

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1509
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1510 1511
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1512 1513
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1514 1515 1516 1517
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1518
        yield
Y
yuyang18 已提交
1519
        self._op_role_var = []
Y
yuyang18 已提交
1520
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1521

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
    @contextlib.contextmanager
    def _lr_schedule_guard(self):
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.


        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
        self._op_role_var = []
        self._current_role = OpRole.Forward

1546
    def __str__(self):
Y
yuyang18 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1556 1557
        return self.to_string(True)

F
fengjiayi 已提交
1558 1559 1560
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1561

F
fengjiayi 已提交
1562
        Args:
Y
yuyang18 已提交
1563 1564
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1565

Y
yuyang18 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1586 1587
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1588 1589
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1590

W
Wu Yi 已提交
1591
    def _get_desc(self):
Y
yuyang18 已提交
1592 1593 1594 1595 1596 1597 1598
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1599 1600
        return self.desc

X
version  
Xin Pan 已提交
1601 1602 1603
    def _version(self):
        return self.desc._version()

1604
    def clone(self, for_test=False):
Y
yuyang18 已提交
1605 1606 1607
        """
        Create a new, duplicated program.

1608

Y
yuyang18 已提交
1609 1610 1611 1612
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1613

Y
yuyang18 已提交
1614 1615 1616 1617
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1618 1619 1620 1621 1622
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1623 1624

        Args:
Y
yuyang18 已提交
1625 1626
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1627

D
dzhwinter 已提交
1628
        Returns:
Y
yuyang18 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1682 1683
        """
        if for_test:
X
Xin Pan 已提交
1684
            p = self._inference_optimize(prune_read_op=False)
1685
        else:
1686
            p = Program()
G
gongweibao 已提交
1687 1688
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1689
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1690 1691 1692
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1693 1694 1695 1696

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1697
            p._sync_with_cpp()
1698

W
Wu Yi 已提交
1699
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1700
        p._copy_data_info_from(self)
Y
Yu Yang 已提交
1701
        return p
1702

W
Wu Yi 已提交
1703
    def _prune(self, targets):
Y
yuyang18 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1719 1720 1721 1722 1723 1724
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1725 1726
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1727
                    # and we need to find the current op that generate this
1728 1729 1730 1731 1732 1733 1734 1735
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1736
                    t = t.op
1737 1738 1739 1740
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1741
                else:
1742 1743
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1744 1745 1746 1747

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1748 1749 1750
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1751
        res._sync_with_cpp()
1752 1753
        return res

X
Xin Pan 已提交
1754
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1755
        """
F
fengjiayi 已提交
1756 1757 1758 1759 1760
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1761
        3. change the :code:`is_test`
Y
yuyang18 已提交
1762 1763 1764
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1765
        Args:
X
Xin Pan 已提交
1766 1767
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1768

Y
yuyang18 已提交
1769 1770 1771 1772 1773 1774
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1775
        res = Program()
1776
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1777 1778 1779 1780

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1781
        if prune_read_op:
1782 1783 1784 1785 1786 1787 1788 1789 1790
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1791
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1792 1793

        # change all `is_test` attributes to True
M
minqiyang 已提交
1794
        for i in six.moves.range(res.desc.num_blocks()):
1795
            block = res.desc.block(i)
M
minqiyang 已提交
1796
            for j in six.moves.range(block.op_size()):
1797 1798 1799
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
M
minqiyang 已提交
1800 1801 1802
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1803
        res._sync_with_cpp()
1804 1805
        return res

1806 1807
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1808 1809 1810 1811 1812 1813 1814
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1815
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1816 1817 1818 1819

        Returns:
            Program: A deserialized program desc.
        """
1820 1821
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1822
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1823
        p._sync_with_cpp()
1824
        return p
Y
Yu Yang 已提交
1825

D
dzhwinter 已提交
1826 1827
    @property
    def random_seed(self):
Y
yuyang18 已提交
1828 1829 1830 1831 1832 1833
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1834 1835
        return self._seed

Q
qiaolongfei 已提交
1836 1837
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1838 1839 1840
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1841 1842
        return self.desc.num_blocks()

D
dzhwinter 已提交
1843 1844 1845 1846 1847 1848
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1849
    def __repr__(self):
1850
        return self.__str__()
1851

Y
Yu Yang 已提交
1852
    def global_block(self):
Y
yuyang18 已提交
1853 1854 1855
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1856 1857
        return self.blocks[0]

Q
Qiao Longfei 已提交
1858
    def block(self, index):
Y
yuyang18 已提交
1859 1860 1861 1862 1863 1864 1865 1866
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1867 1868
        return self.blocks[index]

Y
Yu Yang 已提交
1869
    def current_block(self):
Y
yuyang18 已提交
1870 1871 1872 1873
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1874 1875
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1876
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1887
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1888 1889 1890
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1891 1892 1893 1894
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1895
    def _rollback(self):
Y
yuyang18 已提交
1896 1897 1898 1899 1900
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1901 1902
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1903
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1914 1915 1916
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1917
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1918

W
Wu Yi 已提交
1919
    def _copy_param_info_from(self, other):
1920
        """
1921
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1922

Y
yuyang18 已提交
1923 1924 1925
        Notes: This is a very low level API. Users should not invoke it
        directly.

1926 1927 1928 1929 1930 1931 1932
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1933
            raise TypeError("_copy_param_info_from should be invoked with "
1934 1935 1936
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1937
            raise ValueError("_copy_param_info_from should be invoked with two "
1938
                             "program, with represent the same topology")
W
Wu Yi 已提交
1939
        self.global_block()._copy_param_info_from(other.global_block())
1940

W
Wu Yi 已提交
1941
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
1942 1943
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1944

Y
yuyang18 已提交
1945 1946 1947
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1948 1949 1950 1951 1952 1953 1954
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1955
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
1956 1957 1958
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1959
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
1960
                             "program, with represent the same topology")
1961
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
1962 1963 1964
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1965
    def list_vars(self):
Y
yuyang18 已提交
1966 1967 1968 1969 1970 1971
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1972
        for each_block in self.blocks:
1973
            for each_var in list(each_block.vars.values()):
1974 1975
                yield each_var

Y
Yu Yang 已提交
1976

Y
Yu Yang 已提交
1977
class Parameter(Variable):
1978
    """
1979
    Parameter is derived from Variable. A parameter is a persistable
1980
    Variable, and will be updated by optimizers after each iteration.
1981
    The training of a neural network is essentially the updating of
1982 1983
    its parameters.

1984
    Relative to a general Variable, a Parameter has several its own
1985 1986
    member variables:

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1999 2000
    """

Y
Yu Yang 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2011 2012 2013

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2014 2015 2016 2017
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2018 2019
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2020
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2021

W
wanghaoshuang 已提交
2022
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2023

F
fengjiayi 已提交
2024 2025 2026
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2027 2028 2029
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2030

F
update  
fengjiayi 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2045
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2046
            for attr_name in additional_attr:
2047 2048
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2049 2050
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2051 2052 2053 2054
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2055

Y
Yu Yang 已提交
2056
# program is a global instance.
Y
Yu Yang 已提交
2057 2058
_main_program_ = Program()
_startup_program_ = Program()
2059

2060

2061
def default_startup_program():
Y
Yu Yang 已提交
2062
    """
Y
yuyang18 已提交
2063 2064 2065 2066 2067 2068 2069 2070 2071
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2072

Y
Yu Yang 已提交
2073 2074 2075
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2076
    return _startup_program_
2077

2078

2079
def default_main_program():
Y
Yu Yang 已提交
2080
    """
Y
yuyang18 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2090

Y
Yu Yang 已提交
2091 2092 2093
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2094
    return _main_program_
Y
Yu Yang 已提交
2095 2096 2097 2098 2099


def switch_main_program(program):
    """
    Switch the main program to a new program.
2100

Y
Yu Yang 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2115
    Switch the startup program to a new program
Y
Yu Yang 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2131 2132 2133
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2134

Y
Yu Yang 已提交
2135
    Examples:
Y
yuyang18 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2146

Y
Yu Yang 已提交
2147
    Examples:
Y
yuyang18 已提交
2148 2149 2150 2151 2152 2153

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2154

Y
Yu Yang 已提交
2155
    Args:
Y
yuyang18 已提交
2156
        main_program(Program): New main program inside `with` statement.
2157
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2171 2172 2173 2174


def get_var(name, program=None):
    """
Y
yuyang18 已提交
2175
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2176

X
xuwei06 已提交
2177 2178 2179
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2180
        If None, default_global_program() will be used.
X
xuwei06 已提交
2181 2182 2183 2184 2185 2186 2187

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2188
    assert isinstance(program, Program)
X
xuwei06 已提交
2189 2190

    return program.global_block().var(name)