test_pten_tensor.cc 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "glog/logging.h"
#include "gtest/gtest.h"
17
#include "paddle/phi/api/include/tensor.h"
18 19
#include "paddle/phi/core/kernel_registry.h"

20
namespace paddle {
21
namespace tests {
22 23

template <typename T>
24
experimental::Tensor InitCPUTensorForTest() {
C
Chen Weihang 已提交
25
  std::vector<int64_t> tensor_shape{5, 5};
26
  auto t1 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape);
27 28
  auto* p_data_ptr = t1.mutable_data<T>(paddle::PlaceType::kCPU);
  for (int64_t i = 0; i < t1.size(); i++) {
29
    p_data_ptr[i] = T(5);
30 31 32 33 34 35 36 37 38 39
  }
  return t1;
}

template <typename T>
void TestCopyTensor() {
  auto t1 = InitCPUTensorForTest<T>();
  auto t1_cpu_cp = t1.template copy_to<T>(paddle::PlaceType::kCPU);
  CHECK((paddle::PlaceType::kCPU == t1_cpu_cp.place()));
  for (int64_t i = 0; i < t1.size(); i++) {
C
Chen Weihang 已提交
40
    CHECK_EQ(t1_cpu_cp.template mutable_data<T>()[i], T(5));
41
  }
42
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
43 44 45 46 47 48
  VLOG(2) << "Do GPU copy test";
  auto t1_gpu_cp = t1_cpu_cp.template copy_to<T>(paddle::PlaceType::kGPU);
  CHECK((paddle::PlaceType::kGPU == t1_gpu_cp.place()));
  auto t1_gpu_cp_cp = t1_gpu_cp.template copy_to<T>(paddle::PlaceType::kGPU);
  CHECK((paddle::PlaceType::kGPU == t1_gpu_cp_cp.place()));
  auto t1_gpu_cp_cp_cpu =
49 50 51
      t1_gpu_cp_cp.template copy_to<T>(paddle::PlaceType::kCPU);
  CHECK((paddle::PlaceType::kCPU == t1_gpu_cp_cp_cpu.place()));
  for (int64_t i = 0; i < t1.size(); i++) {
C
Chen Weihang 已提交
52
    CHECK_EQ(t1_gpu_cp_cp_cpu.template mutable_data<T>()[i], T(5));
53
  }
54 55 56 57
#endif
}

void TestAPIPlace() {
C
Chen Weihang 已提交
58
  std::vector<int64_t> tensor_shape = {5, 5};
59
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
60
  auto t1 = experimental::Tensor(paddle::PlaceType::kGPU, tensor_shape);
61
  t1.mutable_data<float>(paddle::PlaceType::kGPU);
62 63
  CHECK((paddle::PlaceType::kGPU == t1.place()));
#endif
64
  auto t2 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape);
65
  t2.mutable_data<float>(paddle::PlaceType::kCPU);
66 67 68 69
  CHECK((paddle::PlaceType::kCPU == t2.place()));
}

void TestAPISizeAndShape() {
C
Chen Weihang 已提交
70
  std::vector<int64_t> tensor_shape = {5, 5};
71
  auto t1 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape);
72 73 74 75
  CHECK_EQ(t1.size(), 25);
  CHECK(t1.shape() == tensor_shape);
}

H
Hao Lin 已提交
76 77 78 79 80
void TestAPISlice() {
  std::vector<int64_t> tensor_shape_origin1 = {5, 5};
  std::vector<int64_t> tensor_shape_sub1 = {3, 5};
  std::vector<int64_t> tensor_shape_origin2 = {5, 5, 5};
  std::vector<int64_t> tensor_shape_sub2 = {1, 5, 5};
81
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
82
  auto t1 = experimental::Tensor(paddle::PlaceType::kGPU, tensor_shape_origin1);
83
  t1.mutable_data<float>(paddle::PlaceType::kGPU);
H
Hao Lin 已提交
84 85
  CHECK(t1.slice(0, 5).shape() == tensor_shape_origin1);
  CHECK(t1.slice(0, 3).shape() == tensor_shape_sub1);
86
  auto t2 = experimental::Tensor(paddle::PlaceType::kGPU, tensor_shape_origin2);
87
  t2.mutable_data<float>(paddle::PlaceType::kGPU);
H
Hao Lin 已提交
88 89
  CHECK(t2.slice(4, 5).shape() == tensor_shape_sub2);
#endif
90
  auto t3 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape_origin1);
91
  t3.mutable_data<float>(paddle::PlaceType::kCPU);
H
Hao Lin 已提交
92 93
  CHECK(t3.slice(0, 5).shape() == tensor_shape_origin1);
  CHECK(t3.slice(0, 3).shape() == tensor_shape_sub1);
94
  auto t4 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape_origin2);
95
  t4.mutable_data<float>(paddle::PlaceType::kCPU);
H
Hao Lin 已提交
96 97 98 99 100
  CHECK(t4.slice(4, 5).shape() == tensor_shape_sub2);

  // Test writing function for sliced tensor
  auto t = InitCPUTensorForTest<float>();
  auto t_sliced = t.slice(0, 1);
101 102
  auto* t_sliced_data_ptr =
      t_sliced.mutable_data<float>(paddle::PlaceType::kCPU);
H
Hao Lin 已提交
103 104 105
  for (int64_t i = 0; i < t_sliced.size(); i++) {
    t_sliced_data_ptr[i] += static_cast<float>(5);
  }
106
  auto* t_data_ptr = t.mutable_data<float>(paddle::PlaceType::kCPU);
H
Hao Lin 已提交
107 108 109 110 111
  for (int64_t i = 0; i < t_sliced.size(); i++) {
    CHECK_EQ(t_data_ptr[i], static_cast<float>(10));
  }
}

112 113
template <typename T>
paddle::DataType TestDtype() {
C
Chen Weihang 已提交
114
  std::vector<int64_t> tensor_shape = {5, 5};
115
  auto t1 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape);
116
  t1.template mutable_data<T>(paddle::PlaceType::kCPU);
117 118 119 120 121
  return t1.type();
}

template <typename T>
void TestCast(paddle::DataType data_type) {
C
Chen Weihang 已提交
122
  std::vector<int64_t> tensor_shape = {5, 5};
123
  auto t1 = experimental::Tensor(paddle::PlaceType::kCPU, tensor_shape);
124
  t1.template mutable_data<T>(paddle::PlaceType::kCPU);
125
  auto t2 = t1.cast(data_type);
126
  CHECK(t2.type() == data_type);
127
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
128
  auto tg1 = experimental::Tensor(paddle::PlaceType::kGPU);
129
  tg1.reshape(tensor_shape);
130
  tg1.template mutable_data<T>(paddle::PlaceType::kGPU);
131 132 133
  auto tg2 = tg1.cast(data_type);
  CHECK(tg2.type() == data_type);
#endif
134 135 136 137 138 139 140
}

void GroupTestCopy() {
  VLOG(2) << "Float cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<float>();
  VLOG(2) << "Double cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<double>();
141
  VLOG(2) << "int cpu-cpu-gpu-gpu-cpu";
142 143 144 145 146 147 148 149 150
  TestCopyTensor<int>();
  VLOG(2) << "int64 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<int64_t>();
  VLOG(2) << "int16 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<int16_t>();
  VLOG(2) << "int8 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<int8_t>();
  VLOG(2) << "uint8 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<uint8_t>();
151
  VLOG(2) << "complex<float> cpu-cpu-gpu-gpu-cpu";
152
  TestCopyTensor<paddle::complex64>();
153
  VLOG(2) << "complex<double> cpu-cpu-gpu-gpu-cpu";
154
  TestCopyTensor<paddle::complex128>();
155 156
  VLOG(2) << "Fp16 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<paddle::float16>();
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
}

void GroupTestCast() {
  VLOG(2) << "int cast";
  TestCast<int>(paddle::DataType::FLOAT32);
  VLOG(2) << "int32 cast";
  TestCast<int32_t>(paddle::DataType::FLOAT32);
  VLOG(2) << "int64 cast";
  TestCast<int64_t>(paddle::DataType::FLOAT32);
  VLOG(2) << "double cast";
  TestCast<double>(paddle::DataType::FLOAT32);
  VLOG(2) << "bool cast";
  TestCast<bool>(paddle::DataType::FLOAT32);
  VLOG(2) << "uint8 cast";
  TestCast<uint8_t>(paddle::DataType::FLOAT32);
  VLOG(2) << "float cast";
  TestCast<float>(paddle::DataType::FLOAT32);
174
  VLOG(2) << "complex<float> cast";
175
  TestCast<paddle::complex64>(paddle::DataType::FLOAT32);
176
  VLOG(2) << "complex<double> cast";
177
  TestCast<paddle::complex128>(paddle::DataType::FLOAT32);
178 179
  VLOG(2) << "float16 cast";
  TestCast<paddle::float16>(paddle::DataType::FLOAT16);
180 181 182 183 184 185 186 187 188 189
}

void GroupTestDtype() {
  CHECK(TestDtype<float>() == paddle::DataType::FLOAT32);
  CHECK(TestDtype<double>() == paddle::DataType::FLOAT64);
  CHECK(TestDtype<int>() == paddle::DataType::INT32);
  CHECK(TestDtype<int64_t>() == paddle::DataType::INT64);
  CHECK(TestDtype<int16_t>() == paddle::DataType::INT16);
  CHECK(TestDtype<int8_t>() == paddle::DataType::INT8);
  CHECK(TestDtype<uint8_t>() == paddle::DataType::UINT8);
190 191
  CHECK(TestDtype<paddle::complex64>() == paddle::DataType::COMPLEX64);
  CHECK(TestDtype<paddle::complex128>() == paddle::DataType::COMPLEX128);
192
  CHECK(TestDtype<paddle::float16>() == paddle::DataType::FLOAT16);
193 194
}

195
void TestInitilized() {
196
  experimental::Tensor test_tensor(paddle::PlaceType::kCPU, {1, 1});
197
  CHECK(test_tensor.is_initialized() == true);
198
  test_tensor.mutable_data<float>(paddle::PlaceType::kCPU);
199
  CHECK(test_tensor.is_initialized() == true);
200
  float* tensor_data = test_tensor.mutable_data<float>();
201 202 203 204 205 206 207 208
  for (int i = 0; i < test_tensor.size(); i++) {
    tensor_data[i] = 0.5;
  }
  for (int i = 0; i < test_tensor.size(); i++) {
    CHECK(tensor_data[i] == 0.5);
  }
}

C
Chen Weihang 已提交
209 210 211 212 213
void TestJudgeTensorType() {
  experimental::Tensor test_tensor(paddle::PlaceType::kCPU, {1, 1});
  CHECK(test_tensor.is_dense_tensor() == true);
}

214
TEST(PhiTensor, All) {
C
Chen Weihang 已提交
215 216
  VLOG(2) << "TestCopy";
  GroupTestCopy();
217 218 219 220 221 222
  VLOG(2) << "TestDtype";
  GroupTestDtype();
  VLOG(2) << "TestShape";
  TestAPISizeAndShape();
  VLOG(2) << "TestPlace";
  TestAPIPlace();
C
Chen Weihang 已提交
223 224 225 226
  VLOG(2) << "TestSlice";
  TestAPISlice();
  VLOG(2) << "TestCast";
  GroupTestCast();
227 228
  VLOG(2) << "TestInitilized";
  TestInitilized();
C
Chen Weihang 已提交
229 230
  VLOG(2) << "TestJudgeTensorType";
  TestJudgeTensorType();
231
}
232 233

}  // namespace tests
234
}  // namespace paddle