retinanet_detection_output_op.cc 23.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
limitations under the License. */

#include <glog/logging.h>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class RetinanetDetectionOutputOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_GE(
        ctx->Inputs("BBoxes").size(), 1UL,
        "Input(BBoxes) of RetinanetDetectionOutput should not be null.");
    PADDLE_ENFORCE_GE(
        ctx->Inputs("Scores").size(), 1UL,
        "Input(Scores) of RetinanetDetectionOutput should not be null.");
    PADDLE_ENFORCE_GE(
        ctx->Inputs("Anchors").size(), 1UL,
        "Input(Anchors) of RetinanetDetectionOutput should not be null.");
    PADDLE_ENFORCE_EQ(
        ctx->Inputs("BBoxes").size(), ctx->Inputs("Scores").size(),
        "Input tensors(BBoxes and Scores) should have the same size.");
    PADDLE_ENFORCE_EQ(
        ctx->Inputs("BBoxes").size(), ctx->Inputs("Anchors").size(),
        "Input tensors(BBoxes and Anchors) should have the same size.");
    PADDLE_ENFORCE(
        ctx->HasInput("ImInfo"),
        "Input(ImInfo) of RetinanetDetectionOutput should not be null");
    PADDLE_ENFORCE(
        ctx->HasOutput("Out"),
        "Output(Out) of RetinanetDetectionOutput should not be null.");

    auto bboxes_dims = ctx->GetInputsDim("BBoxes");
    auto scores_dims = ctx->GetInputsDim("Scores");
    auto anchors_dims = ctx->GetInputsDim("Anchors");
    auto im_info_dims = ctx->GetInputDim("ImInfo");

    const size_t b_n = bboxes_dims.size();
    PADDLE_ENFORCE_GT(b_n, 0, "Input bbox tensors count should > 0.");
    const size_t s_n = scores_dims.size();
    PADDLE_ENFORCE_GT(s_n, 0, "Input score tensors count should > 0.");
    const size_t a_n = anchors_dims.size();
    PADDLE_ENFORCE_GT(a_n, 0, "Input anchor tensors count should > 0.");

    auto bbox_dims = bboxes_dims[0];
    auto score_dims = scores_dims[0];
    auto anchor_dims = anchors_dims[0];
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(score_dims.size(), 3,
                        "The rank of Input(Scores) must be 3");
      PADDLE_ENFORCE_EQ(bbox_dims.size(), 3,
                        "The rank of Input(BBoxes) must be 3");
      PADDLE_ENFORCE_EQ(anchor_dims.size(), 2,
                        "The rank of Input(Anchors) must be 2");
      PADDLE_ENFORCE(bbox_dims[2] == 4,
                     "The last dimension of Input(BBoxes) must be 4, "
                     "represents the layout of coordinate "
                     "[xmin, ymin, xmax, ymax]");
      PADDLE_ENFORCE_EQ(bbox_dims[1], score_dims[1],
                        "The 2nd dimension of Input(BBoxes) must be equal to "
                        "2nd dimension of Input(Scores), which represents the "
                        "number of the predicted boxes.");

      PADDLE_ENFORCE_EQ(anchor_dims[0], bbox_dims[1],
                        "The 1st dimension of Input(Anchors) must be equal to "
                        "2nd dimension of Input(BBoxes), which represents the "
                        "number of the predicted boxes.");
      PADDLE_ENFORCE_EQ(im_info_dims.size(), 2,
                        "The rank of Input(ImInfo) must be 2.");
    }
    // Here the box_dims[0] is not the real dimension of output.
    // It will be rewritten in the computing kernel.
    ctx->SetOutputDim("Out", {bbox_dims[1], bbox_dims[2] + 2});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type =
97
        OperatorWithKernel::IndicateVarDataType(ctx, "Scores");
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    return framework::OpKernelType(input_data_type,
                                   platform::CPUPlace());  // ctx.GetPlace());
  }
};

template <class T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
                          const std::pair<float, T>& pair2) {
  return pair1.first > pair2.first;
}

template <class T>
bool SortScoreTwoPairDescend(const std::pair<float, std::pair<T, T>>& pair1,
                             const std::pair<float, std::pair<T, T>>& pair2) {
  return pair1.first > pair2.first;
}

template <class T>
static inline void GetMaxScoreIndex(
    const std::vector<T>& scores, const T threshold, int top_k,
    std::vector<std::pair<T, int>>* sorted_indices) {
  for (size_t i = 0; i < scores.size(); ++i) {
    if (scores[i] > threshold) {
      sorted_indices->push_back(std::make_pair(scores[i], i));
    }
  }
  // Sort the score pair according to the scores in descending order
  std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
                   SortScorePairDescend<int>);
  // Keep top_k scores if needed.
  if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
    sorted_indices->resize(top_k);
  }
}

template <class T>
static inline T BBoxArea(const std::vector<T>& box, const bool normalized) {
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
static inline T JaccardOverlap(const std::vector<T>& box1,
                               const std::vector<T>& box2,
                               const bool normalized) {
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
    T norm = normalized ? static_cast<T>(0.) : static_cast<T>(1.);
    T inter_w = inter_xmax - inter_xmin + norm;
    T inter_h = inter_ymax - inter_ymin + norm;
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

template <typename T>
class RetinanetDetectionOutputKernel : public framework::OpKernel<T> {
 public:
  void NMSFast(const std::vector<std::vector<T>>& cls_dets,
               const T nms_threshold, const T eta,
               std::vector<int>* selected_indices) const {
    int64_t num_boxes = cls_dets.size();
    std::vector<std::pair<T, int>> sorted_indices;
    for (int64_t i = 0; i < num_boxes; ++i) {
      sorted_indices.push_back(std::make_pair(cls_dets[i][4], i));
    }
    // Sort the score pair according to the scores in descending order
    std::stable_sort(sorted_indices.begin(), sorted_indices.end(),
                     SortScorePairDescend<int>);
    selected_indices->clear();
    T adaptive_threshold = nms_threshold;

    while (sorted_indices.size() != 0) {
      const int idx = sorted_indices.front().second;
      bool keep = true;
      for (size_t k = 0; k < selected_indices->size(); ++k) {
        if (keep) {
          const int kept_idx = (*selected_indices)[k];
          T overlap = T(0.);

          overlap = JaccardOverlap<T>(cls_dets[idx], cls_dets[kept_idx], false);
          keep = overlap <= adaptive_threshold;
        } else {
          break;
        }
      }
      if (keep) {
        selected_indices->push_back(idx);
      }
      sorted_indices.erase(sorted_indices.begin());
      if (keep && eta < 1 && adaptive_threshold > 0.5) {
        adaptive_threshold *= eta;
      }
    }
  }

  void DeltaScoreToPrediction(
      const std::vector<T>& bboxes_data, const std::vector<T>& anchors_data,
      T im_height, T im_width, T im_scale, int class_num,
      const std::vector<std::pair<T, int>>& sorted_indices,
      std::map<int, std::vector<std::vector<T>>>* preds) const {
    im_height = static_cast<T>(round(im_height / im_scale));
    im_width = static_cast<T>(round(im_width / im_scale));
    T zero(0);
    int i = 0;
    for (const auto& it : sorted_indices) {
      T score = it.first;
      int idx = it.second;
      int a = idx / class_num;
      int c = idx % class_num;

      int box_offset = a * 4;
      T anchor_box_width =
          anchors_data[box_offset + 2] - anchors_data[box_offset] + 1;
      T anchor_box_height =
          anchors_data[box_offset + 3] - anchors_data[box_offset + 1] + 1;
      T anchor_box_center_x = anchors_data[box_offset] + anchor_box_width / 2;
      T anchor_box_center_y =
          anchors_data[box_offset + 1] + anchor_box_height / 2;
      T target_box_center_x = 0, target_box_center_y = 0;
      T target_box_width = 0, target_box_height = 0;
      target_box_center_x =
          bboxes_data[box_offset] * anchor_box_width + anchor_box_center_x;
      target_box_center_y =
          bboxes_data[box_offset + 1] * anchor_box_height + anchor_box_center_y;
      target_box_width =
          std::exp(bboxes_data[box_offset + 2]) * anchor_box_width;
      target_box_height =
          std::exp(bboxes_data[box_offset + 3]) * anchor_box_height;
      T pred_box_xmin = target_box_center_x - target_box_width / 2;
      T pred_box_ymin = target_box_center_y - target_box_height / 2;
      T pred_box_xmax = target_box_center_x + target_box_width / 2 - 1;
      T pred_box_ymax = target_box_center_y + target_box_height / 2 - 1;
      pred_box_xmin = pred_box_xmin / im_scale;
      pred_box_ymin = pred_box_ymin / im_scale;
      pred_box_xmax = pred_box_xmax / im_scale;
      pred_box_ymax = pred_box_ymax / im_scale;

      pred_box_xmin = std::max(std::min(pred_box_xmin, im_width - 1), zero);
      pred_box_ymin = std::max(std::min(pred_box_ymin, im_height - 1), zero);
      pred_box_xmax = std::max(std::min(pred_box_xmax, im_width - 1), zero);
      pred_box_ymax = std::max(std::min(pred_box_ymax, im_height - 1), zero);

      std::vector<T> one_pred;
      one_pred.push_back(pred_box_xmin);
      one_pred.push_back(pred_box_ymin);
      one_pred.push_back(pred_box_xmax);
      one_pred.push_back(pred_box_ymax);
      one_pred.push_back(score);
      (*preds)[c].push_back(one_pred);
      i++;
    }
  }

  void MultiClassNMS(const std::map<int, std::vector<std::vector<T>>>& preds,
                     int class_num, const int keep_top_k, const T nms_threshold,
                     const T nms_eta, std::vector<std::vector<T>>* nmsed_out,
                     int* num_nmsed_out) const {
    std::map<int, std::vector<int>> indices;
    int num_det = 0;
    for (int c = 0; c < class_num; ++c) {
      if (static_cast<bool>(preds.count(c))) {
        const std::vector<std::vector<T>> cls_dets = preds.at(c);
        NMSFast(cls_dets, nms_threshold, nms_eta, &(indices[c]));
        num_det += indices[c].size();
      }
    }

    std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
    for (const auto& it : indices) {
      int label = it.first;
      const std::vector<int>& label_indices = it.second;
      for (size_t j = 0; j < label_indices.size(); ++j) {
        int idx = label_indices[j];
        score_index_pairs.push_back(std::make_pair(preds.at(label)[idx][4],
                                                   std::make_pair(label, idx)));
      }
    }
    // Keep top k results per image.
    std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
                     SortScoreTwoPairDescend<int>);
    if (num_det > keep_top_k) {
      score_index_pairs.resize(keep_top_k);
    }

    // Store the new indices.
    std::map<int, std::vector<int>> new_indices;
    for (const auto& it : score_index_pairs) {
      int label = it.second.first;
      int idx = it.second.second;
      std::vector<T> one_pred;
      one_pred.push_back(label);
      one_pred.push_back(preds.at(label)[idx][4]);
      one_pred.push_back(preds.at(label)[idx][0]);
      one_pred.push_back(preds.at(label)[idx][1]);
      one_pred.push_back(preds.at(label)[idx][2]);
      one_pred.push_back(preds.at(label)[idx][3]);
      nmsed_out->push_back(one_pred);
    }

    *num_nmsed_out = (num_det > keep_top_k ? keep_top_k : num_det);
  }

  void RetinanetDetectionOutput(const framework::ExecutionContext& ctx,
                                const std::vector<Tensor>& scores,
                                const std::vector<Tensor>& bboxes,
                                const std::vector<Tensor>& anchors,
                                const Tensor& im_info,
                                std::vector<std::vector<T>>* nmsed_out,
                                int* num_nmsed_out) const {
    int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
    int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
    T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
    T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
    T score_threshold = static_cast<T>(ctx.Attr<float>("score_threshold"));

    int64_t class_num = scores[0].dims()[1];
    std::map<int, std::vector<std::vector<T>>> preds;
    for (size_t l = 0; l < scores.size(); ++l) {
      // Fetch per level score
      Tensor scores_per_level = scores[l];
      // Fetch per level bbox
      Tensor bboxes_per_level = bboxes[l];
      // Fetch per level anchor
      Tensor anchors_per_level = anchors[l];

      int64_t scores_num = scores_per_level.numel();
      int64_t bboxes_num = bboxes_per_level.numel();
      std::vector<T> scores_data(scores_num);
      std::vector<T> bboxes_data(bboxes_num);
      std::vector<T> anchors_data(bboxes_num);
      std::copy_n(scores_per_level.data<T>(), scores_num, scores_data.begin());
      std::copy_n(bboxes_per_level.data<T>(), bboxes_num, bboxes_data.begin());
      std::copy_n(anchors_per_level.data<T>(), bboxes_num,
                  anchors_data.begin());
      std::vector<std::pair<T, int>> sorted_indices;

      // For the highest level, we take the threshold 0.0
      T threshold = (l < (scores.size() - 1) ? score_threshold : 0.0);
      GetMaxScoreIndex(scores_data, threshold, nms_top_k, &sorted_indices);
      auto* im_info_data = im_info.data<T>();
      auto im_height = im_info_data[0];
      auto im_width = im_info_data[1];
      auto im_scale = im_info_data[2];
      DeltaScoreToPrediction(bboxes_data, anchors_data, im_height, im_width,
                             im_scale, class_num, sorted_indices, &preds);
    }

    MultiClassNMS(preds, class_num, keep_top_k, nms_threshold, nms_eta,
                  nmsed_out, num_nmsed_out);
  }

  void MultiClassOutput(const platform::DeviceContext& ctx,
                        const std::vector<std::vector<T>>& nmsed_out,
                        Tensor* outs) const {
    auto* odata = outs->data<T>();
    int count = 0;
    int64_t out_dim = 6;
    for (size_t i = 0; i < nmsed_out.size(); ++i) {
      odata[count * out_dim] = nmsed_out[i][0] + 1;  // label
      odata[count * out_dim + 1] = nmsed_out[i][1];  // score
      odata[count * out_dim + 2] = nmsed_out[i][2];  // xmin
      odata[count * out_dim + 3] = nmsed_out[i][3];  // xmin
      odata[count * out_dim + 4] = nmsed_out[i][4];  // xmin
      odata[count * out_dim + 5] = nmsed_out[i][5];  // xmin
      count++;
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
    auto boxes = ctx.MultiInput<Tensor>("BBoxes");
    auto scores = ctx.MultiInput<Tensor>("Scores");
    auto anchors = ctx.MultiInput<Tensor>("Anchors");
    auto* im_info = ctx.Input<LoDTensor>("ImInfo");
    auto* outs = ctx.Output<LoDTensor>("Out");

    std::vector<Tensor> boxes_list(boxes.size());
    std::vector<Tensor> scores_list(scores.size());
    std::vector<Tensor> anchors_list(anchors.size());
    for (size_t j = 0; j < boxes_list.size(); ++j) {
      boxes_list[j] = *boxes[j];
      scores_list[j] = *scores[j];
      anchors_list[j] = *anchors[j];
    }
    auto score_dims = scores_list[0].dims();
    int64_t batch_size = score_dims[0];
    auto box_dims = boxes_list[0].dims();
    int64_t box_dim = box_dims[2];
    int64_t out_dim = box_dim + 2;

    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();

    std::vector<std::vector<std::vector<T>>> all_nmsed_out;
    std::vector<size_t> batch_starts = {0};
    for (int i = 0; i < batch_size; ++i) {
      int num_nmsed_out = 0;
      std::vector<Tensor> box_per_batch_list(boxes_list.size());
      std::vector<Tensor> score_per_batch_list(scores_list.size());
      for (size_t j = 0; j < boxes_list.size(); ++j) {
        auto score_dims = scores_list[j].dims();
        score_per_batch_list[j] = scores_list[j].Slice(i, i + 1);
        score_per_batch_list[j].Resize({score_dims[1], score_dims[2]});
        box_per_batch_list[j] = boxes_list[j].Slice(i, i + 1);
        box_per_batch_list[j].Resize({score_dims[1], box_dim});
      }
      Tensor im_info_slice = im_info->Slice(i, i + 1);

      std::vector<std::vector<T>> nmsed_out;
      RetinanetDetectionOutput(ctx, score_per_batch_list, box_per_batch_list,
                               anchors_list, im_info_slice, &nmsed_out,
                               &num_nmsed_out);
      all_nmsed_out.push_back(nmsed_out);
      batch_starts.push_back(batch_starts.back() + num_nmsed_out);
    }

    int num_kept = batch_starts.back();
    if (num_kept == 0) {
      outs->Resize({0, out_dim});
    } else {
      outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
      for (int i = 0; i < batch_size; ++i) {
        int64_t s = batch_starts[i];
        int64_t e = batch_starts[i + 1];
        if (e > s) {
          Tensor out = outs->Slice(s, e);
          MultiClassOutput(dev_ctx, all_nmsed_out[i], &out);
        }
      }
    }

    framework::LoD lod;
    lod.emplace_back(batch_starts);

    outs->set_lod(lod);
  }
};

class RetinanetDetectionOutputOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("BBoxes",
             "(List) A list of tensors from multiple FPN levels. Each "
             "element is a 3-D Tensor with shape [N, Mi, 4] represents the "
             "predicted locations of Mi bounding boxes, N is the batch size. "
             "Mi is the number of bounding boxes from i-th FPN level. Each "
             "bounding box has four coordinate values and the layout is "
             "[xmin, ymin, xmax, ymax].")
        .AsDuplicable();
    AddInput("Scores",
             "(List) A list of tensors from multiple FPN levels. Each "
             "element is a 3-D Tensor with shape [N, Mi, C] represents the "
             "predicted confidence from its FPN level. N is the batch size, "
             "C is the class number (excluding background), Mi is the number "
             "of bounding boxes from i-th FPN level. For each bounding box, "
             "there are total C scores.")
        .AsDuplicable();
    AddInput("Anchors",
             "(List) A list of tensors from multiple FPN levels. Each"
             "element is a 2-D Tensor with shape [Mi, 4] represents the "
             "locations of Mi anchor boxes from i-th FPN level. Each "
             "bounding box has four coordinate values and the layout is "
             "[xmin, ymin, xmax, ymax].")
        .AsDuplicable();
    AddInput("ImInfo",
             "(LoDTensor) A 2-D LoDTensor with shape [N, 3] represents the "
             "image information. N is the batch size, each image information "
             "includes height, width and scale.");
    AddAttr<float>("score_threshold",
                   "(float) "
                   "Threshold to filter out bounding boxes with a confidence "
                   "score.");
    AddAttr<int>("nms_top_k",
                 "(int64_t) "
                 "Maximum number of detections per FPN layer to be kept "
                 "according to the confidence before NMS.");
    AddAttr<float>("nms_threshold",
                   "(float) "
                   "The threshold to be used in NMS.");
    AddAttr<float>("nms_eta",
                   "(float) "
                   "The parameter for adaptive NMS.");
    AddAttr<int>(
        "keep_top_k",
        "(int64_t) "
        "Number of total bounding boxes to be kept per image after NMS "
        "step.");
    AddOutput("Out",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
              "detections. Each row has 6 values: "
              "[label, confidence, xmin, ymin, xmax, ymax]"
              "No is the total number of detections in this mini-batch."
              "For each instance, "
              "the offsets in first dimension are called LoD, the number of "
              "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
              "no detected bbox.");
    AddComment(R"DOC(
This operator is to decode boxes and scores from each FPN layer and do
multi-class non maximum suppression (NMS) on merged predictions.

Top-scoring predictions per FPN layer are decoded with the anchor
information. This operator greedily selects a subset of detection bounding
boxes from each FPN layer that have high scores larger than score_threshold,
if providing this threshold, then selects the largest nms_top_k confidences
scores per FPN layer, if nms_top_k is larger than -1.
The decoding schema is described below:

ox = (pw * pxv * tx * + px) - tw / 2

oy = (ph * pyv * ty * + py) - th / 2

ow = exp(pwv * tw) * pw + tw / 2

oh = exp(phv * th) * ph + th / 2

where `tx`, `ty`, `tw`, `th` denote the predicted box's center coordinates, width
and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote the
anchor's center coordinates, width and height. `pxv`, `pyv`, `pwv`,
`phv` denote the variance of the anchor box and `ox`, `oy`, `ow`, `oh` denote the
decoded coordinates, width and height. 

Then the top decoded prediction from all levels are merged followed by NMS.
In the NMS step, this operator prunes away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
After NMS step, at most keep_top_k number of total bounding boxes are to be kept
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
independently for each class. The outputs is a 2-D LoDTenosr, for each
image, the offsets in first dimension of LoDTensor are called LoD, the number
of offset is N + 1, where N is the batch size. If LoD[i + 1] - LoD[i] == 0,
means there is no detected bounding box for this image. If there is no detected boxes
for all images, all the elements in LoD are set to 0, and the output tensor is
empty (None).
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(retinanet_detection_output, ops::RetinanetDetectionOutputOp,
                  ops::RetinanetDetectionOutputOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(retinanet_detection_output,
                       ops::RetinanetDetectionOutputKernel<float>,
                       ops::RetinanetDetectionOutputKernel<double>);