operator.h 9.4 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
Q
Qiao Longfei 已提交
18 19 20 21 22
#include <boost/variant.hpp>
#include <string>
#include <unordered_map>
#include <vector>

Q
qijun 已提交
23 24
#include "paddle/framework/attr_checker.h"
#include "paddle/framework/op_desc.pb.h"
Y
Yan Chunwei 已提交
25
#include "paddle/framework/op_proto.pb.h"
Q
qijun 已提交
26 27 28 29 30
#include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
31 32 33 34 35

namespace paddle {
namespace framework {

class OperatorBase;
36 37
class InferShapeContext;
class ExecutionContext;
Q
Qiao Longfei 已提交
38 39 40 41 42 43 44 45
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
46 47 48 49 50 51 52
  /// If a variable is a empty variable, that name will be used.
  static std::string EMPTY_VAR_NAME() { return "@EMPTY@"; }

  /// If a variable is a temporary variable, that name will be set in Python,
  /// but it will be convert to a unique name in scope after OpCreator.
  static std::string TMP_VAR_NAME() { return "@TEMP@"; }

F
fengjiayi 已提交
53 54 55 56 57
  /// If a variable's name has a certain suffix, it means that the
  /// variable is the gradient of another varibale.
  /// e.g. Variable "x@GRAD" is the gradient of varibale "x".
  static std::string GRAD_VAR_SUFFIX() { return "@GRAD"; }

58 59 60
  /// Variables with this suffix are supposed to be filled up with zeros.
  static std::string ZERO_VAR_SUFFIX() { return "@ZERO"; }

Q
Qiao Longfei 已提交
61 62 63 64 65 66 67 68 69
  virtual ~OperatorBase() {}

  template <typename T>
  inline const T& GetAttr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }

70
  virtual std::string DebugString() const;
Q
Qiao Longfei 已提交
71

Q
Qiao Longfei 已提交
72 73 74 75
  /// Init will be called after CreateOperator, you can put some initialization
  /// logic here.
  virtual void Init() {}

Q
Qiao Longfei 已提交
76 77
  /// InferShape infer the size of Variables used by this Operator with
  /// information inside scope
Y
Yu Yang 已提交
78
  virtual void InferShape(const Scope& scope) const = 0;
Q
Qiao Longfei 已提交
79 80

  /// Net will call this function to Run an op.
Y
Yu Yang 已提交
81
  virtual void Run(const Scope& scope,
Y
Yu Yang 已提交
82 83
                   const platform::DeviceContext& dev_ctx) const = 0;

Y
Yu Yang 已提交
84 85
  virtual bool IsNetOp() const { return false; }

D
dongzhihong 已提交
86 87 88
  /// rename inputs outputs name
  void Rename(const std::string& old_name, const std::string& new_name);

Y
Yu Yang 已提交
89
  //! Get a input with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
90
  const std::string& Input(const std::string& name) const;
Y
Yu Yang 已提交
91

Y
Yu Yang 已提交
92 93
  //! Get a input which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yan Chunwei 已提交
94
  std::vector<std::string> Inputs(const std::string& name) const;
Y
Yu Yang 已提交
95
  //! Get a output with argument's name described in `op_proto`
Y
Yan Chunwei 已提交
96
  const std::string& Output(const std::string& name) const;
Y
Yu Yang 已提交
97 98
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yan Chunwei 已提交
99 100
  std::vector<std::string> Outputs(const std::string& name) const;

Q
Qiao Longfei 已提交
101
 public:
Q
Qiao Longfei 已提交
102
  std::string type_;
D
dongzhihong 已提交
103 104 105 106
  // NOTE: in case of OpGrad, inputs_ contains:
  // I (Inputs)
  // O (Outputs)
  // OG (Output Gradients)
Q
Qiao Longfei 已提交
107
  std::vector<std::string> inputs_;
D
dongzhihong 已提交
108 109
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Q
Qiao Longfei 已提交
110 111
  std::vector<std::string> outputs_;
  AttributeMap attrs_;
Y
Yan Chunwei 已提交
112
  // store the arguments' offset described in op_desc.
Y
Yu Yang 已提交
113
  std::shared_ptr<std::unordered_map<std::string, int>> in_out_idxs_;
Y
Yan Chunwei 已提交
114 115
};

116
class OperatorContext {
Y
Yan Chunwei 已提交
117
 public:
118
  OperatorContext(const OperatorBase* op, const Scope& scope)
119 120 121
      : op_(*op), scope_(scope) {}

  size_t InputSize() const { return op_.inputs_.size(); }
Y
Yan Chunwei 已提交
122

123 124
  size_t OutputSize() const { return op_.outputs_.size(); }

125 126
  const Variable* InputVar(const size_t index) const {
    return scope_.FindVar(op_.inputs_.at(index));
Y
Yan Chunwei 已提交
127 128
  }

129 130
  Variable* OutputVar(const size_t index) const {
    return scope_.FindVar(op_.outputs_.at(index));
Y
Yan Chunwei 已提交
131 132
  }

133
  const Variable* InputVar(const std::string& name) const {
Y
Yu Yang 已提交
134
    return scope_.FindVar(op_.Input(name));
Y
Yan Chunwei 已提交
135 136
  }

137
  Variable* OutputVar(const std::string& name) const {
Y
Yu Yang 已提交
138
    return scope_.FindVar(op_.Output(name));
Y
Yan Chunwei 已提交
139 140
  }

141 142
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
143 144
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
145
    res.reserve(names.size());
Y
Yan Chunwei 已提交
146
    std::transform(
147
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
148
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
149 150 151
    return res;
  }

152
  std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
153 154
    auto names = op_.Outputs(name);
    std::vector<const Variable*> res;
155
    res.reserve(names.size());
Y
Yan Chunwei 已提交
156
    std::transform(
157
        names.begin(), names.end(), std::back_inserter(res),
Y
Yu Yang 已提交
158
        [this](const std::string& name) { return scope_.FindVar(name); });
Y
Yan Chunwei 已提交
159 160 161
    return res;
  }

162
  template <typename T>
163
  const T* Input(const size_t index) const {
164 165 166 167
    return &(InputVar(index)->Get<T>());
  }

  template <typename T>
168
  T* Output(const size_t index) const {
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    return OutputVar(index)->GetMutable<T>();
  }

  template <typename T>
  const T* Input(const std::string& name) const {
    return &(InputVar(name)->Get<T>());
  }

  template <typename T>
  T* Output(const std::string& name) const {
    return OutputVar(name)->GetMutable<T>();
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
189
                     return &scope_.FindVar(name)->Get<T>();
190 191 192 193 194 195 196 197 198 199 200
                   });
    return res;
  }

  template <typename T>
  std::vector<const T*> MultiOutput(const std::string& name) const {
    auto names = op_.Outputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
201
                     return scope_.FindVar(name)->GetMutable<T>();
202 203 204 205 206
                   });
    return res;
  }

  const OperatorBase& op_;
207
  const Scope& scope_;
208 209 210 211
};

class InferShapeContext : public OperatorContext {
 public:
212
  InferShapeContext(const OperatorBase* op, const Scope& scope)
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
      : OperatorContext(op, scope) {}
};

template <typename T>
struct EigenDeviceConverter;

template <>
struct EigenDeviceConverter<platform::CPUPlace> {
  using EigenDeviceType = Eigen::DefaultDevice;
};

#ifndef PADDLE_ONLY_CPU
template <>
struct EigenDeviceConverter<platform::GPUPlace> {
  using EigenDeviceType = Eigen::GpuDevice;
};
#endif

class ExecutionContext : public OperatorContext {
 public:
233
  ExecutionContext(const OperatorBase* op, const Scope& scope,
234 235 236
                   const platform::DeviceContext& device_context)
      : OperatorContext(op, scope), device_context_(device_context) {}

Q
qijun 已提交
237 238 239 240 241 242 243
  template <typename PlaceType,
            typename DeviceType =
                typename EigenDeviceConverter<PlaceType>::EigenDeviceType>
  DeviceType* GetEigenDevice() const;

  platform::Place GetPlace() const { return device_context_.GetPlace(); }

Y
Yan Chunwei 已提交
244
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
245 246
};

Q
qijun 已提交
247 248
class OpKernel {
 public:
Q
qijun 已提交
249
  /**
250
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
251 252
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
253
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
254 255
   */

256
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
257 258 259 260

  virtual ~OpKernel() {}
};

Q
Qiao Longfei 已提交
261 262
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
263 264
  struct OpKernelKey {
    platform::Place place_;
Q
Qiao Longfei 已提交
265

Y
Yu Yang 已提交
266 267 268 269 270
    OpKernelKey() = default;
    OpKernelKey(const platform::DeviceContext& dev_ctx) {
      place_ = dev_ctx.GetPlace();
    }

Q
qijun 已提交
271 272 273
    bool operator==(const OpKernelKey& o) const {
      return platform::places_are_same_class(place_, o.place_);
    }
Y
Yu Yang 已提交
274 275 276 277 278 279 280 281 282 283 284
  };

  struct OpKernelHash {
    std::hash<bool> hash_;
    size_t operator()(const OpKernelKey& key) const {
      return hash_(platform::is_gpu_place(key.place_));
    }
  };

  using OpKernelMap =
      std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
Q
Qiao Longfei 已提交
285

286
  void InferShape(const Scope& scope) const {
287 288 289
    InferShape(InferShapeContext(this, scope));
  }

Y
Yu Yang 已提交
290
  void Run(const Scope& scope,
Y
Yu Yang 已提交
291
           const platform::DeviceContext& dev_ctx) const final {
Q
Qiao Longfei 已提交
292
    auto& opKernel = AllOpKernels().at(type_).at(OpKernelKey(dev_ctx));
293
    opKernel->Compute(ExecutionContext(this, scope, dev_ctx));
Q
Qiao Longfei 已提交
294 295
  }

Y
Yu Yang 已提交
296 297 298 299
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
300
  }
Y
Yan Chunwei 已提交
301

Y
Yu Yang 已提交
302
 protected:
303
  virtual void InferShape(const InferShapeContext& ctx) const = 0;
Q
Qiao Longfei 已提交
304 305 306 307
};

}  // namespace framework
}  // namespace paddle