conv_mkldnn_op.cc 43.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include <unordered_map>
Y
Yu Yang 已提交
16 17
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

Y
Yihua Xu 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
inline void GetWeightsTz(std::vector<int>& weights_tz, int groups,  // NOLINT
                         bool is_conv3d) {
  if (groups > 1) {
    if (is_conv3d) {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int dimension = weights_tz[2];
      int height = weights_tz[3];
      int width = weights_tz[4];
      weights_tz.resize(6);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = dimension;
      weights_tz[4] = height;
      weights_tz[5] = width;
    } else {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int height = weights_tz[2];
      int width = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = height;
      weights_tz[4] = width;
    }
  }
}

inline mkldnn::memory::format GetWeightsFormat(mkldnn::memory::format format,
                                               int groups, bool is_conv3d) {
  if (is_conv3d) {
    return (groups == 1) ? format : mkldnn::memory::format::goidhw;
  } else {
    return (groups == 1) ? format : mkldnn::memory::format::goihw;
  }
}

72
template <typename T, typename K>
73
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
74 75 76 77
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
78 79 80 81 82 83 84 85
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
    if (!is_INT8) {
      ComputeFP32(ctx);
    } else {
      ComputeINT8(ctx);
    }
  }
86

87
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
K
Krzysztof Binias 已提交
88 89
    const bool is_test = ctx.Attr<bool>("is_test");

90 91
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
92 93 94 95
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
96
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
97 98
    auto* output = ctx.Output<Tensor>("Output");

99 100
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN);
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN);
101
    PADDLE_ENFORCE(input->dims().size() == 4 || input->dims().size() == 5,
Y
Yihua Xu 已提交
102
                   "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
103 104
    PADDLE_ENFORCE(filter->dims().size() == 4 || filter->dims().size() == 5,
                   "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
105 106 107 108 109 110 111
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
112 113 114 115

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
116
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
117
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
118 119
    int groups = ctx.Attr<int>("groups");

120
    bool is_conv3d = strides.size() == 3U;
121
    // TODO(tpatejko): add support for dilation
122
    PADDLE_ENFORCE(
123 124 125 126
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
127 128 129 130 131 132 133 134
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
135
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
136
    GetWeightsTz(weights_tz, g, is_conv3d);
137 138
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

139
    // Get unique name for storing MKLDNN primitives
J
Jacek Czaja 已提交
140
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
141
        src_tz, weights_tz, strides, paddings, dilations, groups,
142
        ctx.op().Input("Input") + ctx.op().Input("Filter"));
143 144 145 146
    const std::string key_conv_pd = key + "@conv_pd";

    std::vector<primitive> pipeline;

147 148 149 150 151 152 153 154 155 156 157 158 159
    // For convolution with groups we need to recreate primitive descriptor
    // as Paddle tensor is not having group dims while mkldnn treats
    // group as another dimensions
    mkldnn::memory::primitive_desc user_weights_mpd =
        filter->get_mkldnn_prim_desc();
    if (g > 1) {
      mkldnn::memory::format weights_format =
          GetWeightsFormat(filter->format(), g, is_conv3d);
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
      user_weights_mpd =
          mkldnn::memory::primitive_desc(user_weights_md, mkldnn_engine);
    }
160 161 162 163 164

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
165 166 167 168
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

169
    mkldnn::memory::format weights_format = mkldnn::memory::format::any;
170 171 172 173 174 175
    // Check the format for user's special output
    if (chosen_memory_format != mkldnn::memory::format::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
176 177
    }

178
    auto src_md = platform::MKLDNNMemDesc(
179
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
180
    auto weights_md = platform::MKLDNNMemDesc(
181
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
182 183
    std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                               // Currently used whenever bias is != nullptr.
184
    auto dst_md = platform::MKLDNNMemDesc(
185
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
186 187

    // create a conv primitive descriptor and save it for usage in backward
188
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
189 190
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
191 192 193 194
    if (bias) {
      bias_tz = paddle::framework::vectorize2int(bias->dims());
      auto bias_md = platform::MKLDNNMemDesc(
          bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
195 196 197
      conv_pd = ConvFwdPrimitiveDesc(
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
          fuse_relu, fuse_residual_conn, fwd_prop_kind);
198
    } else {
199 200 201
      conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides,
                                     paddings, mkldnn_engine, fuse_relu,
                                     fuse_residual_conn, fwd_prop_kind);
202
    }
203
    // Save conv_pd/src_memory/weights_memory for backward pass
204
    if (!is_test) dev_ctx.SetBlob(key_conv_pd, conv_pd);
205

J
Jacek Czaja 已提交
206
    platform::ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
207

208
    // create mkldnn memory from input tensors (data/weights)
209 210
    auto user_src_memory_p = handler.AcquireSrcMemory(
        input->get_mkldnn_prim_desc(), to_void_cast<T>(input_data));
211
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
212
        user_weights_mpd, to_void_cast<T>(filter_data));
213

214 215 216 217 218
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
219 220

    std::shared_ptr<mkldnn::memory> dst_memory_p;
221

222
    if (fuse_residual_conn) {
223 224
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
225

226 227 228 229 230 231
      PADDLE_ENFORCE(
          residual_param_data != nullptr,
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
232

233
      if (residual_param->format() != handler.GetDstFormat()) {
Y
Yu Yang 已提交
234 235 236
        auto output_data = output->mutable_data<T>(
            ctx.GetPlace(), ::paddle::memory::Allocator::kDefault,
            handler.GetDstMemorySize());
237 238 239 240 241 242 243 244 245
        auto residual_data_tz =
            paddle::framework::vectorize2int(residual_param->dims());
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
        auto user_residual_memory_p = handler.AcquireResidualDataMemory(
            user_residual_md, to_void_cast<T>(residual_param_data));
246 247 248

        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
249 250
      } else {
        output->ShareDataWith(*residual_param);
251 252 253
        auto output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
254
      }
255
    } else {
256 257 258
      auto output_data = output->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault,
          handler.GetDstMemorySize());
259 260
      dst_memory_p =
          handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
261
    }
262 263

    // create convolution op primitive
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
      auto user_bias_memory_p =
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

      auto bias_memory_p =
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
280 281

    // push primitive to stream and wait until it's executed
282
    pipeline.push_back(*conv_p);
283 284
    stream(stream::kind::eager).submit(pipeline).wait();

285
    output->set_mkldnn_prim_desc(dst_memory_p->get_primitive_desc());
286
  }
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(input->dims().size() == 4 || input->dims().size() == 5,
                   "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE(filter->dims().size() == 4 || filter->dims().size() == 5,
                   "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
X
xiaolil1 已提交
321
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
X
xiaolil1 已提交
322
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
X
xiaolil1 已提交
323

324
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
X
xiaolil1 已提交
325 326 327 328
    if (fuse_residual_conn) {
      PADDLE_ENFORCE(force_fp32_output != true,
                     "residual fusion does not support force output with fp32");
    }
329 330 331 332 333 334 335 336 337

    bool is_conv3d = strides.size() == 3U;
    // TODO(tpatejko): add support for dilation
    PADDLE_ENFORCE(
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");
X
xiaolil1 已提交
338

339 340 341 342 343 344 345 346 347 348 349
    PADDLE_ENFORCE(is_conv3d != true, "int8 does not support conv3d currently");

    const T* input_data = input->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    int g = std::max(groups, 1);
    GetWeightsTz(weights_tz, g, is_conv3d);
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

X
xiaolil1 已提交
350 351 352 353 354 355 356 357 358 359 360 361
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
    auto dst_dt = fuse_relu ? paddle::framework::ToMKLDNNDataType(
                                  framework::DataTypeTrait<uint8_t>::DataType)
                            : paddle::framework::ToMKLDNNDataType(
                                  framework::DataTypeTrait<int8_t>::DataType);

    if (force_fp32_output) {
      dst_dt = paddle::framework::ToMKLDNNDataType(
          framework::DataTypeTrait<float>::DataType);
    }

X
xiaolil1 已提交
362 363 364 365 366 367
    if (fuse_residual_conn) {
      auto residual = ctx.Input<Tensor>("ResidualData");
      auto residual_dt = paddle::framework::ToMKLDNNDataType(residual->type());
      if (dst_dt != residual_dt) dst_dt = residual_dt;
    }

368 369 370 371 372
    // Get unique name for storing MKLDNN primitives
    std::string key;
    key.reserve(MaxKeyLength);
    platform::ConvMKLDNNHandler::AppendKey(
        &key, src_tz, weights_tz, strides, paddings, dilations, groups, src_dt,
X
xiaolil1 已提交
373
        input->format(), fuse_relu, fuse_residual_conn,
374
        ctx.op().Input("Input") + ctx.op().Input("Filter"));
375 376
    const std::string key_conv_pd = key + "@conv_pd";

X
xiaolil1 已提交
377 378
    bool need_s8_to_u8 = false;

379 380 381 382 383 384 385 386 387 388 389 390 391 392
    std::shared_ptr<mkldnn::convolution_forward> conv_p = nullptr;
    std::shared_ptr<mkldnn::memory> src_memory_p = nullptr;
    std::shared_ptr<mkldnn::memory> user_src_memory_p = nullptr;
    std::shared_ptr<mkldnn::memory> dst_memory_p = nullptr;
    std::vector<primitive> pipeline;
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd =
        nullptr;
    std::shared_ptr<platform::ConvMKLDNNHandler> handler = nullptr;

    auto prim_key = key + "@conv_p";
    auto dst_key = key + "@dst_mem_p";
    auto src_key = key + "@src_mem_p";
    auto user_src_key = key + "@user_src_mem_p";
    auto src_reorder_key = key + "@src_mem_preorder_p";
X
xiaolil1 已提交
393 394
    auto residual_reorder_key = key + "@residual_data_mem_preorder_p";

395 396
    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));
X
xiaolil1 已提交
397

398 399 400
    if (conv_p == nullptr || !is_test) {
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
X
xiaolil1 已提交
401
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
402 403 404
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
X
xiaolil1 已提交
405 406
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
              scale_out_data / (scale_in_data * scale_weights_data[i]);
      }

      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? mkldnn::memory::format::oihw
                     : mkldnn::memory::format::goihw);

      /* create memory descriptor for convolution without specified format
      * ('any') which lets a primitive (convolution in this case) choose
      * the memory format preferred for best performance
      */
      std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format =
          platform::data_format_to_memory_format(data_format);

      std::vector<int> bias_tz;

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md =
          platform::MKLDNNMemDesc(dst_tz, dst_dt, chosen_memory_format);
X
xiaolil1 已提交
449

450 451 452 453 454 455 456
      // create a conv primitive descriptor and save it for usage in backward
      if (bias) {
        bias_tz = paddle::framework::vectorize2int(bias->dims());
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
                                               memory::format::x);
        conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
                                       strides, paddings, mkldnn_engine,
X
xiaolil1 已提交
457 458
                                       fuse_relu, fuse_residual_conn,
                                       output_shift_scale, sum_scale, is_test);
459
      } else {
X
xiaolil1 已提交
460 461 462 463
        conv_pd =
            ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
                                 mkldnn_engine, fuse_relu, fuse_residual_conn,
                                 output_shift_scale, sum_scale, is_test);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
      }
      // Save conv_pd/src_memory/weights_memory for backward pass
      dev_ctx.SetBlob(key_conv_pd, conv_pd);

      handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                    mkldnn_engine, key));

      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

X
xiaolil1 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                          "Output and elementwise parameter need to have the "
                          "same dimension sizes");
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
              paddle::framework::vectorize2int(residual_param->dims());

          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());

          if (residual_dt == mkldnn::memory::data_type::u8) {
            dst_memory_p = platform::SetDstMemory<uint8_t>(
                ctx, output, residual_param, user_residual_md, handler,
                &pipeline);
          } else {
            need_s8_to_u8 = fuse_relu;
            dst_memory_p = platform::SetDstMemory<int8_t>(
                ctx, output, residual_param, user_residual_md, handler,
                &pipeline);
          }
        } else {
          output->ShareDataWith(*residual_param);
          if (residual_dt == mkldnn::memory::data_type::u8) {
            dst_memory_p =
                platform::SetDstMemory<uint8_t>(ctx, output, handler);
          } else {
            need_s8_to_u8 = fuse_relu;
            dst_memory_p = platform::SetDstMemory<int8_t>(ctx, output, handler);
          }
        }
      } else if (!force_fp32_output) {
X
xiaolil1 已提交
523 524 525 526 527
        if (fuse_relu) {
          dst_memory_p = platform::SetDstMemory<uint8_t>(ctx, output, handler);
        } else {
          dst_memory_p = platform::SetDstMemory<int8_t>(ctx, output, handler);
        }
528 529 530 531 532 533 534
      } else {
        dst_memory_p = platform::SetDstMemory<float>(ctx, output, handler);
      }

      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
      if (bias) {
X
xiaolil1 已提交
535
        const K* bias_data = bias->data<K>();
536
        auto user_bias_md = platform::MKLDNNMemDesc(
X
xiaolil1 已提交
537
            {bias_tz}, platform::MKLDNNGetDataType<K>(), memory::format::x);
538
        auto user_bias_memory_p = handler->AcquireBiasMemory(
X
xiaolil1 已提交
539
            user_bias_md, to_void_cast<K>(bias_data));
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             bias_memory_p, dst_memory_p);
      } else {
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             dst_memory_p);
      }

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_p);
    } else {
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }

      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
X
xiaolil1 已提交
585 586 587 588 589 590 591 592 593 594

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        output->ShareDataWith(*residual_param);
        if (residual_dt == mkldnn::memory::data_type::u8) {
          platform::SetDstMemoryHandler<uint8_t>(ctx, output, handler,
                                                 &dst_memory_p);
        } else {
595
          need_s8_to_u8 = fuse_relu;
X
xiaolil1 已提交
596 597 598 599
          platform::SetDstMemoryHandler<int8_t>(ctx, output, handler,
                                                &dst_memory_p);
        }
      } else if (!force_fp32_output) {
X
xiaolil1 已提交
600
        if (fuse_relu) {
X
xiaolil1 已提交
601 602
          platform::SetDstMemoryHandler<uint8_t>(ctx, output, handler,
                                                 &dst_memory_p);
X
xiaolil1 已提交
603
        } else {
X
xiaolil1 已提交
604 605
          platform::SetDstMemoryHandler<int8_t>(ctx, output, handler,
                                                &dst_memory_p);
X
xiaolil1 已提交
606
        }
607
      } else {
X
xiaolil1 已提交
608 609
        platform::SetDstMemoryHandler<float>(ctx, output, handler,
                                             &dst_memory_p);
610
      }
X
xiaolil1 已提交
611

612 613 614
      if (src_memory_reorder_p) {
        pipeline.push_back(*src_memory_reorder_p);
      }
X
xiaolil1 已提交
615 616 617 618 619 620 621

      auto residual_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
        pipeline.push_back(*residual_reorder_p);
      }

622 623 624 625 626
      pipeline.push_back(*conv_p);
    }
    // push primitive to stream and wait until it's executed
    stream(stream::kind::eager).submit(pipeline).wait();

X
xiaolil1 已提交
627 628 629 630
    if (need_s8_to_u8) {
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }

631 632 633
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
634

635
 private:
636
  mkldnn::primitive_attr CreatePostOps(bool fuse_relu,
637
                                       bool fuse_residual_conn) const {
M
Michal Gallus 已提交
638 639
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
640
    // Fusion with Elementwise layer relies on adding a sum post-operation with
641 642 643 644 645
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
646 647 648 649 650 651 652 653 654 655 656
      post_operations.append_sum(1.0f);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_relu) {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 0.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
    }
M
Michal Gallus 已提交
657 658 659 660
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

661
  mkldnn::primitive_attr CreatePostOps(
X
xiaolil1 已提交
662 663
      bool fuse_relu, bool fuse_residual_conn,
      const std::vector<float> output_shift_scale, float sum_scale) const {
664 665 666 667
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
    int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
    conv_attr.set_output_scales(mask, output_shift_scale);
X
xiaolil1 已提交
668 669 670
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
X
xiaolil1 已提交
671 672 673 674 675 676 677
    if (fuse_relu) {
      constexpr float scale = 1.0f;
      constexpr float negative_slope = 0.0f;
      constexpr float placeholder = 1.0f;  // beta
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                     negative_slope, placeholder);
    }
678 679 680 681
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

682 683 684 685
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& dst, const std::vector<int>& strides,
                       const std::vector<int>& paddings,
686
                       const mkldnn::engine& engine, const bool fuse_relu,
687 688
                       const bool fuse_residual_conn,
                       mkldnn::prop_kind fwd_prop_kind) const {
689 690
    memory::dims stride_dims = strides;
    memory::dims padding_dims = paddings;
691

692
    auto conv_desc = mkldnn::convolution_forward::desc(
693 694
        fwd_prop_kind, mkldnn::convolution_direct, src, weights, dst,
        stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);
695

696 697
    mkldnn::primitive_attr conv_attr =
        CreatePostOps(fuse_relu, fuse_residual_conn);
M
Michal Gallus 已提交
698 699 700

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);
701

702 703
    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
704
  }
705

706 707 708 709
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& dst, const std::vector<int>& strides,
                       const std::vector<int>& paddings,
X
xiaolil1 已提交
710
                       const mkldnn::engine& engine, const bool fuse_relu,
X
xiaolil1 已提交
711
                       const bool fuse_residual_conn,
712
                       const std::vector<float> output_shift_scale,
X
xiaolil1 已提交
713
                       const float sum_scale, bool is_test) const {
714 715 716 717 718 719 720 721 722 723
    memory::dims stride_dims = {strides[0], strides[1]};
    memory::dims padding_dims = {paddings[0], paddings[1]};

    auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                               : mkldnn::prop_kind::forward_training;

    auto conv_desc = mkldnn::convolution_forward::desc(
        propagation, mkldnn::convolution_direct, src, weights, dst, stride_dims,
        padding_dims, padding_dims, mkldnn::padding_kind::zero);

X
xiaolil1 已提交
724 725
    mkldnn::primitive_attr conv_attr = CreatePostOps(
        fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
726 727 728 729 730 731 732 733

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);

    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
  }

734 735 736 737 738
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& bias, const memory::desc& dst,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
739
                       const mkldnn::engine& engine, const bool fuse_relu,
740 741
                       const bool fuse_residual_conn,
                       mkldnn::prop_kind fwd_prop_kind) const {
742 743
    memory::dims stride_dims = strides;
    memory::dims padding_dims = paddings;
744 745

    auto conv_desc = mkldnn::convolution_forward::desc(
746 747
        fwd_prop_kind, mkldnn::convolution_direct, src, weights, bias, dst,
        stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);
748

749 750
    mkldnn::primitive_attr conv_attr =
        CreatePostOps(fuse_relu, fuse_residual_conn);
M
Michal Gallus 已提交
751 752 753

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);
754 755 756 757

    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
  }
758 759 760 761 762 763

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& bias, const memory::desc& dst,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
X
xiaolil1 已提交
764
                       const mkldnn::engine& engine, const bool fuse_relu,
X
xiaolil1 已提交
765
                       const bool fuse_residual_conn,
766
                       const std::vector<float> output_shift_scale,
X
xiaolil1 已提交
767
                       const float sum_scale, bool is_test) const {
768 769 770 771 772 773 774 775 776 777
    memory::dims stride_dims = {strides[0], strides[1]};
    memory::dims padding_dims = {paddings[0], paddings[1]};

    auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                               : mkldnn::prop_kind::forward_training;

    auto conv_desc = mkldnn::convolution_forward::desc(
        propagation, mkldnn::convolution_direct, src, weights, bias, dst,
        stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);

X
xiaolil1 已提交
778 779
    mkldnn::primitive_attr conv_attr = CreatePostOps(
        fuse_relu, fuse_residual_conn, output_shift_scale, sum_scale);
780 781 782 783 784 785 786

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);

    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
  }
787 788 789
};

template <typename T>
790
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
791 792 793 794 795
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

796 797
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
798 799 800 801 802 803 804 805 806
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

807 808 809 810 811 812 813 814 815 816
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

817 818 819 820
    PADDLE_ENFORCE(
        !ctx.Attr<bool>("is_test"),
        "is_test attribute should be set to False in training phase.");

821 822 823 824
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
825 826
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
827

828
    bool is_conv3d = strides.size() == 3U;
829 830 831 832 833 834 835 836 837
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
838
    int g = std::max(groups, 1);
Y
Yihua Xu 已提交
839
    GetWeightsTz(weights_tz, g, is_conv3d);
840 841
    std::vector<int> dst_tz =
        paddle::framework::vectorize2int(output_grad->dims());
842

843 844
    auto src_format = input->format();
    mkldnn::memory::format weights_format =
Y
Yihua Xu 已提交
845
        GetWeightsFormat(filter->format(), g, is_conv3d);
846

847
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
848
    // as well as attributes of primitive to be created
849
    // This name will be used as key when saving info into device context
J
Jacek Czaja 已提交
850 851
    const std::string key = platform::ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
852
        ctx.op().Input("Input") + ctx.op().Input("Filter"));
853 854

    const std::string key_conv_pd = key + "@conv_pd";
855
    std::vector<primitive> pipeline;
856

857 858
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
859
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
860
    auto user_weights_md = platform::MKLDNNMemDesc(
861
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
862 863
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
864 865 866 867 868

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
869 870 871 872
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

873 874 875 876 877 878 879
    weights_format = mkldnn::memory::format::any;
    // Check the format for user's special output
    if (chosen_memory_format != mkldnn::memory::format::any) {
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
880 881
    }

882
    auto src_md = platform::MKLDNNMemDesc(
883
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
884
    auto diff_src_md = platform::MKLDNNMemDesc(
885
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
886
    auto weights_md = platform::MKLDNNMemDesc(
887
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
888
    auto diff_weights_md = platform::MKLDNNMemDesc(
889
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
890
    auto diff_dst_md = platform::MKLDNNMemDesc(
891
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
892

893
    // Retrieve conv_pd from device context
894 895 896
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
897 898 899
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
916 917 918
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
919 920 921 922 923 924 925 926 927

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

928 929
    // create backward conv primitive for weights
    if (filter_grad) {
930 931
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
932

933 934 935 936
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

937
      const size_t size = handler.GetDiffWeightsMemorySize();
Y
Yu Yang 已提交
938 939
      filter_grad_data = filter_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
940

941 942 943 944 945 946 947 948 949
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
950

951 952
      auto filter_grad_mpd = diff_weights_memory_p->get_primitive_desc();
      filter_grad->set_mkldnn_prim_desc(filter_grad_mpd);
953 954 955
    }

    if (input_grad) {
956 957 958 959 960 961 962
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

963
      const size_t size = handler.GetDiffSourceMemorySize();
Y
Yu Yang 已提交
964 965
      input_grad_data = input_grad->mutable_data<T>(
          ctx.GetPlace(), paddle::memory::Allocator::kDefault, size);
966

967 968 969 970 971 972 973
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
974

975
      input_grad->set_mkldnn_prim_desc(diff_src_memory_p->get_primitive_desc());
976
    }
977
    stream(stream::kind::eager).submit(pipeline).wait();
X
xiaolil1 已提交
978
  }
979 980 981 982 983 984 985
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
986 987 988
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
989 990 991 992
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
993
                                    ops::kConvMKLDNNINT8,
994 995 996 997
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
998
                                    ops::kConvMKLDNNINT8,
999
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1000 1001 1002 1003 1004

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
1005 1006 1007 1008

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1009
                                    ops::ConvMKLDNNOpKernel<float, float>);
1010 1011 1012 1013 1014

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);