hl_cuda_aggregate.cu 8.6 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "hl_base.h"
#include "hl_cuda.h"
#include "hl_cuda.ph"
#include "hl_aggregate.h"
#include "hl_thread.ph"
#include "hl_matrix_base.cuh"
#include "paddle/utils/Logging.h"

/**
 * @brief   matrix row operator.
 */
template<class Agg, int blockSize>
__global__ void KeMatrixRowOp(Agg agg,
                              real *E,
                              real *Sum,
                              int dimN) {
  __shared__ real sum_s[blockSize];
  int cnt = (dimN + blockSize -1) / blockSize;
  int rowId = blockIdx.x + blockIdx.y*gridDim.x;
  int index = rowId*dimN;
  int tid = threadIdx.x;
  int lmt = tid;

  real tmp = agg.init();
  for (int ii = 0; ii < cnt && lmt < dimN; ii++) {
    tmp = agg(tmp, E[index + lmt]);
    lmt += blockSize;
  }
  sum_s[tid] = tmp;
  __syncthreads();

  for (int stride = blockSize/2; stride > 0; stride = stride/2) {
    if (tid < stride) {
      sum_s[tid] = agg(sum_s[tid], sum_s[tid + stride]);
    }
    __syncthreads();
  }
  __syncthreads();

  if (tid == 0) {
    Sum[rowId] = sum_s[0];
  }
}

template <class Agg>
void hl_matrix_row_op(Agg agg,
                      real *A_d,
                      real *C_d,
                      int dimM,
                      int dimN) {
  int blocksX = dimM;
  int blocksY = 1;
  dim3 threads(128, 1);
  dim3 grid(blocksX, blocksY);

  KeMatrixRowOp<Agg, 128><<< grid, threads, 0, STREAM_DEFAULT >>>
           (agg, A_d, C_d, dimN);
}

void hl_matrix_row_sum(real *A_d, real *C_d, int dimM, int dimN) {
  CHECK_NOTNULL(A_d);
  CHECK_NOTNULL(C_d);

  hl_matrix_row_op(aggregate::sum(),
                   A_d,
                   C_d,
                   dimM,
                   dimN);
  CHECK_SYNC("hl_matrix_row_sum failed");
}

void hl_matrix_row_max(real *A_d, real *C_d, int dimM, int dimN) {
  CHECK_NOTNULL(A_d);
  CHECK_NOTNULL(C_d);

  hl_matrix_row_op(aggregate::max(),
                   A_d,
                   C_d,
                   dimM,
                   dimN);
  CHECK_SYNC("hl_matrix_row_max failed");
}

void hl_matrix_row_min(real *A_d, real *C_d, int dimM, int dimN) {
  CHECK_NOTNULL(A_d);
  CHECK_NOTNULL(C_d);

  hl_matrix_row_op(aggregate::min(),
                   A_d,
                   C_d,
                   dimM,
                   dimN);
  CHECK_SYNC("hl_matrix_row_min failed");
}

/**
 * @brief   matrix column operator.
 */
template<class Agg>
__global__ void KeMatrixColumnOp(Agg agg,
                                 real *E,
                                 real *Sum,
                                 int dimM,
                                 int dimN) {
  int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
  real tmp = agg.init();
  if (rowIdx < dimN) {
    for (int index = 0; index < dimM; index++) {
      tmp = agg(tmp, E[dimN * index + rowIdx]);
    }
    Sum[rowIdx] = tmp;
  }
}

template<class Agg, int blockDimX, int blockDimY>
__global__ void KeMatrixColumnOp_S(Agg agg,
                                   real *E,
                                   real *Sum,
                                   int dimM,
                                   int dimN) {
    __shared__ real _sum[blockDimX*blockDimY];
    int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
    int index = threadIdx.y;

  real tmp = agg.init();
  if (rowIdx < dimN) {
    for (; index < dimM;) {
      tmp = agg(tmp, E[dimN * index + rowIdx]);
      index += blockDimY;
    }
  }
  _sum[threadIdx.x + threadIdx.y*blockDimX] = tmp;
  __syncthreads();

  if (rowIdx < dimN) {
    if (threadIdx.y ==0) {
      real tmp = agg.init();
      for (int i=0; i < blockDimY; i++) {
        tmp = agg(tmp, _sum[threadIdx.x + i*blockDimX]);
      }
      Sum[rowIdx] = tmp;
    }
  }
}

template <class Agg>
void hl_matrix_column_op(Agg agg,
                         real *A_d,
                         real *C_d,
                         int dimM,
                         int dimN) {
  if (dimN >= 8192) {
    int blocksX = (dimN + 128 -1) / 128;
    int blocksY = 1;
    dim3 threads(128, 1);
    dim3 grid(blocksX, blocksY);
    KeMatrixColumnOp<Agg><<< grid, threads, 0, STREAM_DEFAULT >>>
             (agg, A_d, C_d, dimM, dimN);
  } else {
    int blocksX = (dimN + 32 -1) / 32;
    int blocksY = 1;
    dim3 threads(32, 32);
    dim3 grid(blocksX, blocksY);
    KeMatrixColumnOp_S<Agg, 32, 32><<< grid, threads, 0, STREAM_DEFAULT>>>
             (agg, A_d, C_d, dimM, dimN);
  }

  return;
}

void hl_matrix_column_sum(real *A_d, real *C_d, int dimM, int dimN) {
  CHECK_NOTNULL(A_d);
  CHECK_NOTNULL(C_d);

  hl_matrix_column_op(aggregate::sum(),
                      A_d,
                      C_d,
                      dimM,
                      dimN);

  CHECK_SYNC("hl_matrix_column_sum failed");
}

void hl_matrix_column_max(real *A_d, real *C_d, int dimM, int dimN) {
  CHECK_NOTNULL(A_d);
  CHECK_NOTNULL(C_d);

  hl_matrix_column_op(aggregate::max(),
                      A_d,
                      C_d,
                      dimM,
                      dimN);

  CHECK_SYNC("hl_matrix_column_max failed");
}

void hl_matrix_column_min(real *A_d, real *C_d, int dimM, int dimN) {
  CHECK_NOTNULL(A_d);
  CHECK_NOTNULL(C_d);

  hl_matrix_column_op(aggregate::min(),
                      A_d,
                      C_d,
                      dimM,
                      dimN);

  CHECK_SYNC("hl_matrix_column_min failed");
}

template <int blockSize>
__global__ void KeVectorSum(real *E, real *Sum, int dimM) {
  __shared__ double sum_s[blockSize];
  int tid = threadIdx.x;
  int index = blockIdx.y*blockDim.x+threadIdx.x;

  sum_s[tid] = 0.0f;
  while (index < dimM) {
    sum_s[tid] += E[index];
    index += blockDim.x*gridDim.y;
  }
  __syncthreads();

  for (int stride = blockSize/2; stride > 0; stride = stride/2) {
    if (tid < stride) {
      sum_s[tid] += sum_s[tid + stride];
    }
    __syncthreads();
  }
  __syncthreads();

  if (tid == 0) {
    Sum[blockIdx.y] = sum_s[0];
  }
}

void hl_vector_sum(real *A_d, real *C_h, int dimM) {
  CHECK_NOTNULL(A_d);
  CHECK_NOTNULL(C_h);

  int blockSize = 128;
  int gridSize = 128;
  int blocksX = 1;
  int blocksY = gridSize;
  dim3 threads(blockSize, 1);
  dim3 grid(blocksX, blocksY);

  struct _hl_event_st hl_event_st  = {.cu_event = t_resource.event};
  hl_event_t hl_event = &hl_event_st;

  bool isNotReady = false;
  do {
    hl_cuda_event_query(hl_event, isNotReady);
  } while (isNotReady == cudaErrorNotReady);

  KeVectorSum<128><<< grid, threads, 0, STREAM_DEFAULT >>>
           (A_d, t_resource.gpu_mem, dimM);
  KeVectorSum<128><<< 1, threads, 0, STREAM_DEFAULT >>>
           (t_resource.gpu_mem, t_resource.cpu_mem, 128);

  hl_memcpy_async(C_h, t_resource.cpu_mem, sizeof(real), HPPL_STREAM_DEFAULT);
  hl_stream_record_event(HPPL_STREAM_DEFAULT, hl_event);

  CHECK_SYNC("hl_vector_sum failed");
}

template <int blockSize>
__global__ void KeVectorAbsSum(real *E, real *Sum, int dimM) {
  __shared__ double sum_s[blockSize];
  int tid = threadIdx.x;
  int index = blockIdx.y*blockDim.x+threadIdx.x;

  sum_s[tid] = 0.0f;
  while (index < dimM) {
    sum_s[tid] += abs(E[index]);
    index += blockDim.x*gridDim.y;
  }
  __syncthreads();

  for (int stride = blockSize/2; stride > 0; stride = stride/2) {
    if (tid < stride) {
      sum_s[tid] += sum_s[tid + stride];
    }
    __syncthreads();
  }
  __syncthreads();

  if (tid == 0) {
    Sum[blockIdx.y] = sum_s[0];
  }
}

void hl_vector_abs_sum(real *A_d, real *C_h, int dimM) {
  CHECK_NOTNULL(A_d);
  CHECK_NOTNULL(C_h);

  int blockSize = 128;
  int gridSize = 128;
  int blocksX = 1;
  int blocksY = gridSize;
  dim3 threads(blockSize, 1);
  dim3 grid(blocksX, blocksY);

  struct _hl_event_st hl_event_st  = {.cu_event = t_resource.event};
  hl_event_t hl_event = &hl_event_st;

  bool isNotReady = false;
  do {
    hl_cuda_event_query(hl_event, isNotReady);
  } while (isNotReady == cudaErrorNotReady);

  KeVectorAbsSum<128><<< grid, threads, 0, STREAM_DEFAULT >>>
           (A_d, t_resource.gpu_mem, dimM);
  KeVectorAbsSum<128><<< 1, threads, 0, STREAM_DEFAULT >>>
           (t_resource.gpu_mem, t_resource.cpu_mem, 128);

  hl_memcpy_async(C_h, t_resource.cpu_mem, sizeof(real), HPPL_STREAM_DEFAULT);
  hl_stream_record_event(HPPL_STREAM_DEFAULT, hl_event);

  CHECK_SYNC("hl_vector_abs_sum failed");
}