gru_unit_op.cc 9.3 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/gru_unit_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class GRUUnitOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
27 28 29 30 31 32 33 34 35 36
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(%s) of GRUUnitOp should not be null.", "Input");
    PADDLE_ENFORCE(ctx->HasInput("HiddenPrev"),
                   "Input(%s) of GRUUnitOp should not be null.", "HiddenPrev");
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(%s) of GRUUnitOp should not be null.", "Weight");
    PADDLE_ENFORCE(ctx->HasOutput("Gate"),
                   "Output(%s) of GRUUnitOp should not be null.", "Gate");
    PADDLE_ENFORCE(ctx->HasOutput("ResetHiddenPrev"),
G
guosheng 已提交
37
                   "Output(%s) of GRUUnitOp should not be null.",
38 39 40 41 42 43
                   "ResetHiddenPrev");
    PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                   "Output(%s) of GRUUnitOp should not be null.", "Hidden");
    auto input_dims = ctx->GetInputDim("Input");
    auto hidden_prev_dims = ctx->GetInputDim("HiddenPrev");
    auto weight_dims = ctx->GetInputDim("Weight");
G
guosheng 已提交
44 45 46 47 48 49 50
    int batch_size = input_dims[0];
    int input_size = input_dims[1];
    int frame_size = hidden_prev_dims[1];
    int weight_height = weight_dims[0];
    int weight_width = weight_dims[1];
    PADDLE_ENFORCE_EQ(
        input_size, frame_size * 3,
51
        "The input_size must be 3 times of frame_size in GRUUnitOp.");
G
guosheng 已提交
52 53
    PADDLE_ENFORCE_EQ(
        weight_height, frame_size,
54
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
G
guosheng 已提交
55 56
    PADDLE_ENFORCE_EQ(
        weight_width, frame_size * 3,
57
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
G
guosheng 已提交
58 59 60 61 62 63 64 65 66 67
    auto bias = Input("Bias");
    if (bias != framework::kEmptyVarName) {
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
      PADDLE_ENFORCE_EQ(bias_height, 1,
                        "The shape of Bias must be [1, frame_size * 3].");
      PADDLE_ENFORCE_EQ(bias_width, frame_size * 3,
                        "The shape of Bias must be [1, frame_size * 3].");
    }
68 69 70
    ctx->SetOutputDim("Gate", {batch_size, frame_size * 3});
    ctx->SetOutputDim("ResetHiddenPrev", {batch_size, frame_size});
    ctx->SetOutputDim("Hidden", {batch_size, frame_size});
G
guosheng 已提交
71 72 73 74 75
  }
};

class GRUUnitOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
76 77
  GRUUnitOpMaker(framework::OpProto* proto,
                 framework::OpAttrChecker* op_checker)
G
guosheng 已提交
78
      : OpProtoAndCheckerMaker(proto, op_checker) {
79
    AddInput("Input",
G
guosheng 已提交
80 81
             "(Tensor) Matrix with shape [batch_size, frame_size * 3] for the "
             "input.");
82
    AddInput("HiddenPrev",
G
guosheng 已提交
83 84
             "(Tensor) Matrix with shape [batch_size, frame_size] for the "
             "states of previous time step.");
85
    AddInput("Weight",
G
guosheng 已提交
86 87 88 89 90
             "(Tensor) Weight matrix with shape [frame_size, frame_size * 3]. "
             "The elements continuous in memory can be divided into two parts. "
             "The first part are weights of the update gate and reset gate "
             "with shape [frame_size, frame_size * 2], and the second part are "
             "weights of output candidate with shape [frame_size, frame_size]");
91
    AddInput("Bias",
G
guosheng 已提交
92 93
             "(Tensor) Bias vector with shape [1, frame_size * 3] concating "
             "bias of the update gate, reset gate and output candidate.");
94
    AddOutput("Gate",
G
guosheng 已提交
95 96 97
              "(Tensor) Matrix with shape [batch_size, frame_size * 3] for the "
              "output of update gate, reset gate and output candidate")
        .AsIntermediate();
98
    AddOutput("ResetHiddenPrev",
G
guosheng 已提交
99 100 101
              "(Tensor) Matrix with shape [batch_size, frame_size] for the "
              "reseted hidden state of previous time step.")
        .AsIntermediate();
102
    AddOutput("Hidden",
G
guosheng 已提交
103 104
              "(Tensor) The GRU hidden state of the current time step "
              "with shape [batch_size, frame_size].");
105 106 107 108 109 110 111 112 113 114
    AddAttr<int>("activation",
                 "(enum int, default tanh) "
                 "The activation type used for output candidate {h}_t.")
        .SetDefault(tanh)
        .InEnum({identity, sigmoid, tanh, relu});
    AddAttr<int>("gate_activation",
                 "(enum int, default sigmoid) "
                 "The activation type used in update gate and reset gate.")
        .SetDefault(sigmoid)
        .InEnum({identity, sigmoid, tanh, relu});
G
guosheng 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    AddComment(R"DOC(
GRUUnitOp implements part calculations of the GRU unit as following:

\f[
update \ gate: u_t = actGate(xu_t + W_u * hidden_prev + bias_u) \\
reset \ gate: r_t = actGate(xr_t + W_r * hidden_prev + bias_r)  \\
output \ candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, hidden_prev) + bias_c) \\
output: h_t = dot((1-u_t), {h}_t) + dot(u_t, hidden_prev)
\f]

The rest of GRU unit can be completed by using FCOp's output as the input of GRUUnitOp.
)DOC");
  }
};

class GRUUnitGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
135 136 137 138
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(%s) of GRUUnitGradOp should not be null.", "Input");
    PADDLE_ENFORCE(ctx->HasInput("HiddenPrev"),
G
guosheng 已提交
139
                   "Input(%s) of GRUUnitGradOp should not be null.",
140 141 142 143 144 145
                   "HiddenPrev");
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(%s) of GRUUnitGradOp should not be null.", "Weight");
    PADDLE_ENFORCE(ctx->HasInput("Gate"),
                   "Input(%s) of GRUUnitGradOp should not be null.", "Gate");
    PADDLE_ENFORCE(ctx->HasInput("ResetHiddenPrev"),
G
guosheng 已提交
146
                   "Input(%s) of GRUUnitGradOp should not be null.",
147 148 149 150
                   "ResetHiddenPrev");
    PADDLE_ENFORCE(ctx->HasInput("Hidden"),
                   "Input(%s) of GRUUnitGradOp should not be null.", "Hidden");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Gate")),
G
guosheng 已提交
151
                   "Input(%s@GRAD) of GRUUnitGradOp should not be null.",
152 153
                   "Gate");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("ResetHiddenPrev")),
G
guosheng 已提交
154
                   "Input(%s@GRAD) of GRUUnitGradOp should not be null.",
155 156
                   "ResetHiddenPrev");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Hidden")),
G
guosheng 已提交
157
                   "Input(%s@GRAD) of GRUUnitGradOp should not be null.",
158 159 160 161
                   "Hidden");
    auto input_dims = ctx->GetInputDim("Input");
    auto hidden_prev_dims = ctx->GetInputDim("HiddenPrev");
    auto weight_dims = ctx->GetInputDim("Weight");
G
guosheng 已提交
162 163 164 165 166 167 168
    // int batch_size = input_dims[0];
    int input_size = input_dims[1];
    int frame_size = hidden_prev_dims[1];
    int weight_height = weight_dims[0];
    int weight_width = weight_dims[1];
    PADDLE_ENFORCE_EQ(
        input_size, frame_size * 3,
169
        "The input_size must be 3 times of frame_size in GRUUnitOp.");
G
guosheng 已提交
170 171
    PADDLE_ENFORCE_EQ(
        weight_height, frame_size,
172
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
G
guosheng 已提交
173 174
    PADDLE_ENFORCE_EQ(
        weight_width, frame_size * 3,
175
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
G
guosheng 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188
    auto bias = Input("Bias");
    if (bias != framework::kEmptyVarName) {
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
      PADDLE_ENFORCE_EQ(bias_height, 1,
                        "The shape of Bias must be [1, frame_size * 3].");
      PADDLE_ENFORCE_EQ(bias_width, frame_size * 3,
                        "The shape of Bias must be [1, frame_size * 3].");
      auto bias_grad_name = framework::GradVarName("Bias");
      if (ctx->HasOutput(bias_grad_name))
        ctx->SetOutputDim(bias_grad_name, bias_dims);
    }
189
    auto input_grad_name = framework::GradVarName("Input");
G
guosheng 已提交
190 191
    if (ctx->HasOutput(input_grad_name))
      ctx->SetOutputDim(input_grad_name, input_dims);
192
    auto hidden_prev_grad_name = framework::GradVarName("HiddenPrev");
G
guosheng 已提交
193 194
    if (ctx->HasOutput(hidden_prev_grad_name))
      ctx->SetOutputDim(hidden_prev_grad_name, hidden_prev_dims);
195
    auto weight_grad_name = framework::GradVarName("Weight");
G
guosheng 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    if (ctx->HasOutput(weight_grad_name))
      ctx->SetOutputDim(weight_grad_name, weight_dims);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(gru_unit, ops::GRUUnitOp, ops::GRUUnitOpMaker, gru_unit_grad,
            ops::GRUUnitGradOp);
REGISTER_OP_CPU_KERNEL(gru_unit,
                       ops::GRUUnitKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    gru_unit_grad, ops::GRUUnitGradKernel<paddle::platform::CPUPlace, float>);