mkldnn_reuse.h 59.2 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <memory>
17
#include <sstream>
J
Jacek Czaja 已提交
18
#include <string>
19
#include <utility>
J
Jacek Czaja 已提交
20
#include <vector>
21
#include "boost/optional.hpp"
X
xiaoli.liu@intel.com 已提交
22
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
23
#include "paddle/fluid/framework/operator.h"
24
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
25 26 27 28 29 30
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

31 32
using framework::DataLayout;
using framework::Tensor;
J
Jacek Czaja 已提交
33
using user_function = std::function<std::shared_ptr<float>(const float*)>;
34
using memory = mkldnn::memory;
J
Jacek Czaja 已提交
35

36 37
template <typename T, typename TForward,
          typename TBackward = mkldnn_dummy_primitive>
38 39 40 41 42 43 44 45
class MKLDNNHandlerT {
 public:
  MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                 platform::Place cpu_place, const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
46
        key_(platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)),
47 48
        fwd_pd_(nullptr),
        bwd_pd_(nullptr) {
49
    platform::MKLDNNDeviceContext::tls().log_lib_version();
50 51
  }

A
Adam 已提交
52
  std::shared_ptr<TForward> AcquireForwardPrimitive() {
53
    const std::string key_p = key_ + "@fwd_p";
54 55 56
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
A
Adam 已提交
57
      forward_p = std::make_shared<TForward>(*fwd_pd_);
58 59 60 61 62
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

A
Adam 已提交
63
  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
64
    const std::string key_p = key_ + "@bwd_p";
65 66 67
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
A
Adam 已提交
68
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
69 70 71 72 73
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

74 75 76
  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
77 78
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
79 80
  }

81
  template <typename T_out = T>
82
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
83 84
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
A
Adam 已提交
85
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr,
86 87 88
                                            "@dst_mem_p");
  }

89
  template <typename T_out = T>
90 91
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const framework::Tensor* output) {
92 93 94 95
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data),
                                            "@bwd-dst_mem_p");
96 97 98 99 100
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
A
Adam 已提交
101 102
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
103 104 105 106
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
A
Adam 已提交
107 108 109 110
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr,
                                            "@diff_src_mem_p");
111 112
  }

113
 protected:
114
  bool isCached() {
115
    const std::string key_pd = key_common_ + "@fwd_pd";
116 117
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
118

119
    const std::string key_p = key_ + "@fwd_p";
120
    return (dev_ctx_.GetBlob(key_p) != nullptr);
121 122
  }

123 124 125 126 127 128
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
129 130 131
    // Forward PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
132
    const std::string key_pd = key_common_ + "@fwd_pd";
133 134 135 136 137 138 139 140 141
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_pd));
      if (fwd_pd_ == nullptr) {
142 143
        CreateForwardPrimitiveDescriptor(first_arg,
                                         std::forward<Args>(args)...);
144 145 146 147 148
        dev_ctx_.SetBlob(key_pd, fwd_pd_);
      }
    }
  }

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

170 171
  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
172
    const std::string key_fwd_pd = key_common_ + "@fwd_pd";
173 174
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_fwd_pd));
G
GaoWei8 已提交
175 176 177
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_, platform::errors::Unavailable(
                     "Get MKLDNN Forward primitive %s failed.", key_fwd_pd));
178
    const std::string key_pd = key_ + "@bwd_pd";
179 180 181 182 183 184 185 186 187 188
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

189 190 191 192 193 194
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      const std::string& suffix) {
    return std::static_pointer_cast<mkldnn::memory>(
        dev_ctx_.GetBlob(key_ + suffix));
  }

195
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
196
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
197
    const auto local_key = key_ + suffix;
198 199 200
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
201
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
202 203 204 205 206 207 208
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

209 210 211 212 213 214 215 216 217 218 219 220
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
  void AcquireReorder(const std::shared_ptr<mkldnn::memory>& user_memory_p,
                      const std::shared_ptr<mkldnn::memory>& target_memory_p,
                      const std::string& suffix) {
    const auto key_reorder_p = key_ + suffix + "reorder_p";

    auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
    }

    mkldnn::stream astream(engine_);
    reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                 {MKLDNN_ARG_TO, *target_memory_p}});
    astream.wait();
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryWithReorder(
      const mkldnn::memory::desc& user_md,
      const mkldnn::memory::desc& target_md, void* ptr,
      const std::string& suffix, bool is_persistent = false) {
    const auto target_key = key_ + suffix + "_target";
    const auto key_reorder_p = key_ + suffix + "reorder_p";
    const auto user_key = key_ + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(target_key));

    if (target_memory_p == nullptr) {
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, engine_, ptr);
      if (user_md != target_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(target_md, engine_);
        auto reorder_p =
            std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);

        mkldnn::stream astream(engine_);
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx_.SetBlob(user_key, user_memory_p);
      dev_ctx_.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
      mkldnn::stream astream(engine_);

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      }
    }
    return target_memory_p;
  }

288 289 290 291 292 293
  std::shared_ptr<mkldnn::memory> AcquireMemory(const std::string& suffix) {
    const auto local_key = key_ + suffix;
    return std::static_pointer_cast<mkldnn::memory>(
        dev_ctx_.GetBlob(local_key));
  }

294 295 296 297
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  platform::Place place_;
  std::string key_common_;
298
  std::string key_;
299 300 301 302 303
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
};

// TODO(grygielski) this class will be deleted later.
J
Jacek Czaja 已提交
304 305 306 307
class MKLDNNHandler {
 public:
  MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                const std::string& base_key)
308 309 310 311
      : dev_ctx_(dev_ctx),
        engine_(engine),
        key_common_(base_key),
        key_(platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)) {
312
    platform::MKLDNNDeviceContext::tls().log_lib_version();
313
  }
J
Jacek Czaja 已提交
314 315 316 317 318 319 320 321 322 323 324

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_dst_mem_p");
  }

A
Adam 已提交
325
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
J
Jacek Czaja 已提交
326
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
327
    return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p");
J
Jacek Czaja 已提交
328 329
  }

A
Adam 已提交
330
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
J
Jacek Czaja 已提交
331
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
332
    return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p");
J
Jacek Czaja 已提交
333 334 335
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
336
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
J
Jacek Czaja 已提交
337 338 339 340
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
341
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
342 343 344 345 346 347 348
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

349 350 351 352 353 354 355 356 357 358 359 360
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
  // This incarnation of AcquireMemory can call user function eg. custom reorder
  // or preprocessing routine if needed
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const mkldnn::memory::desc& md, void* ptr, const std::string& suffix,
      user_function custom_func = {}) {
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Call custom reorder/preprocessing func if available
      if (custom_func) {
        auto reordered_data = custom_func(reinterpret_cast<const float*>(ptr));
        dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }

A
Adam 已提交
378
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
379 380 381 382 383 384 385
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

386
  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
387
      const std::vector<int64_t>& dims, const mkldnn::memory::data_type dtype,
388
      const MKLDNNMemoryFormat& fmt, void* ptr, const std::string& suffix) {
389 390 391 392 393 394 395
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto md = mkldnn::memory::desc(dims, dtype, fmt);

A
Adam 已提交
396
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
397 398 399 400 401 402 403
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const std::shared_ptr<mkldnn::memory>& user_memory_p,
      const std::shared_ptr<mkldnn::memory>& target_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto stored_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (stored_reorder_p) {
      pipeline.push_back(*stored_reorder_p);
    } else {
      auto reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
421 422 423 424
      mkldnn::stream astream(engine_);
      reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                   {MKLDNN_ARG_TO, *target_memory_p}});
      astream.wait();
J
Jacek Czaja 已提交
425 426 427 428 429 430
    }

    return target_memory_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
431 432
      mkldnn::memory::desc& md,       // NOLINT
      mkldnn::memory::desc& user_md,  // NOLINT
J
Jacek Czaja 已提交
433 434 435
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
436 437
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
438 439 440 441 442 443
    // create reorder primitive if the input format is not the preferred one
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto target_memory_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
A
Adam 已提交
444 445 446

    mkldnn::stream astream(engine_);

J
Jacek Czaja 已提交
447 448
    if (target_memory_p == nullptr) {
      target_memory_p = user_memory_p;
A
Adam 已提交
449 450 451
      if (md != user_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(md, engine_);
        std::shared_ptr<mkldnn::reorder::primitive_desc> reorder_pd;
452 453 454 455 456
        if (is_INT8) {
          mkldnn::primitive_attr
              attri;  // attribute for int8 weights and bias data reorder.
          attri.set_output_scales(mask, scale_data);

A
Adam 已提交
457 458 459
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p, attri));
460
        } else {
A
Adam 已提交
461 462 463
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p));
464
        }
A
Adam 已提交
465 466
        auto reorder_p =
            std::shared_ptr<mkldnn::reorder>(new mkldnn::reorder(*reorder_pd));
J
Jacek Czaja 已提交
467
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
468 469 470 471

        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
472 473 474 475 476 477 478
      }
      dev_ctx_.SetBlob(local_key, target_memory_p);
    } else if (!is_persistent) {
      // Make reorder if needed
      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
A
Adam 已提交
479 480 481
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
482 483 484 485 486 487 488 489
      }
    }
    return target_memory_p;
  }

 protected:
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
490
  std::string key_common_;
491
  std::string key_;
J
Jacek Czaja 已提交
492 493
};

494 495 496
template <typename T>
class BinaryMKLDNNHandler : public platform::MKLDNNHandlerT<T, dnnl::binary> {
 public:
497 498
  BinaryMKLDNNHandler(const dnnl::algorithm algo, const int axis,
                      const MKLDNNDeviceContext& dev_ctx,
499 500
                      const mkldnn::engine engine, platform::Place cpu_place,
                      const Tensor* x, const Tensor* y, Tensor* z,
501
                      float scale_x, float scale_y, float scale_z,
502
                      const std::string& uniq_name)
503
      : platform::MKLDNNHandlerT<T, dnnl::binary>(
504
            dev_ctx, engine, cpu_place,
505
            platform::CreateKey(
506
                dev_ctx, framework::vectorize(x->dims()),
507 508
                uniq_name + (algo == dnnl::algorithm::binary_mul ? "M" : ""))) {
    // bradcasting combined with in-place may require
509 510
    auto rankdiff = x->dims().size() - y->dims().size();
    if (rankdiff > 0) {
511 512 513
      auto suffix = std::to_string(rankdiff);
      this->key_ += suffix;
      this->key_common_ += suffix;
514 515
    }

516 517 518
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          x->layout(), DataLayout::kMKLDNN,
G
GaoWei8 已提交
519
          platform::errors::InvalidArgument("Wrong layout set for X tensor."));
520 521
      PADDLE_ENFORCE_NE(
          x->format(), MKLDNNMemoryFormat::undef,
G
GaoWei8 已提交
522
          platform::errors::InvalidArgument("Wrong format set for X tensor."));
523 524 525

      PADDLE_ENFORCE_EQ(
          y->layout(), DataLayout::kMKLDNN,
G
GaoWei8 已提交
526
          platform::errors::InvalidArgument("Wrong layout set for Y tensor."));
527 528
      PADDLE_ENFORCE_NE(
          y->format(), MKLDNNMemoryFormat::undef,
G
GaoWei8 已提交
529
          platform::errors::InvalidArgument("Wrong format set for Y tensor."));
530 531 532 533 534 535 536

      const auto src_x_tz = framework::vectorize(x->dims());
      const auto src_y_tz = framework::vectorize(y->dims());
      const auto dst_tz = framework::vectorize(z->dims());

      const auto src0_md = dnnl::memory::desc(
          src_x_tz, platform::MKLDNNGetDataType<T>(), x->format());
537
      auto src1_md = dnnl::memory::desc(
538
          src_y_tz, platform::MKLDNNGetDataType<T>(), y->format());
539
      if (rankdiff > 0) {
540 541 542
        std::vector<int64_t> dims1_ex(rankdiff, 1);
        dims1_ex.insert(next(dims1_ex.begin(), (axis == -1 ? rankdiff : axis)),
                        src_y_tz.begin(), src_y_tz.end());
543 544
        src1_md = src1_md.reshape(dims1_ex);
      }
545 546 547
      const auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType<T>(),
                                       MKLDNNMemoryFormat::any);

548 549 550
      auto attributes = CreateAttributes(algo, scale_x, scale_y, scale_z);
      this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md,
                                              src1_md, dst_md);
551
    }
552 553 554 555 556 557
  }

  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(
558
        this->fwd_pd_->src1_desc(), to_void_cast<T>(input_data), "@src1_mem_p");
559
  }
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

 private:
  static inline dnnl::primitive_attr CreateAttributes(dnnl::algorithm op,
                                                      float scale_x,
                                                      float scale_y,
                                                      float scale_z) {
    // Scales set in attributes for inputs contibute to the output equation
    // in the following way (assuming no broadcasting takes place):
    // output_i = scale_0 * x_i <+ or *> scale_1 * y_i;
    // Hence we have to create scales that will:
    // 1. Dequantize both values, by multiplying with (1.0 / scale_x_or_y)
    // 2. Quantize their result to output scale range, by multiplying with
    // (scale_z)
    // If we combine these two, we end up with following equation
    // output = scale_out * (1/scale_x * x <* or +> 1/scale_y * y)
    // Hence, to mimic such behaviour using provided interface,
    // For add operation the equation is equal to:
    // output = (scale_out / scale_x) * x + (scale_out / scale_y) * y
    //                <scale_0>                  <scale_1>
    // For mul operation on the other hand
    // output = (scale_out / scale_x) * x * (1.0 / scale_y) * y
    //                <scale_0>                 <scale_1>
    float scale_0 = scale_z / scale_x;
    float scale_1 =
        op == dnnl::algorithm::binary_add ? scale_z / scale_y : 1.0 / scale_y;
    dnnl::primitive_attr attributes;
    attributes.set_scales(/* input_x_id = */ DNNL_ARG_SRC_0, /* mask = */ 0,
                          {scale_0});
    attributes.set_scales(/* input_y_id = */ DNNL_ARG_SRC_1, /* mask = */ 0,
                          {scale_1});
    return attributes;
  }
592 593
};

594
template <typename T>
595 596 597
class ActivationMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                            mkldnn::eltwise_backward> {
598
 public:
A
Adam 已提交
599
  ActivationMKLDNNHandler(const std::vector<int64_t>& dims,
600
                          mkldnn::algorithm algorithm, float alpha, float beta,
601
                          const MKLDNNMemoryFormat fmt,
602 603 604 605
                          const platform::MKLDNNDeviceContext& dev_ctx,
                          platform::Place cpu_place,
                          const std::string& unique_name)

606 607 608
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
609
            platform::CreateKey(dev_ctx, dims, "a", algorithm, unique_name)) {
610 611
    auto md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);

612 613
    this->AcquireForwardPrimitiveDescriptor(mkldnn::prop_kind::forward_training,
                                            algorithm, md, alpha, beta);
614
  }
615

A
Adam 已提交
616
  ActivationMKLDNNHandler(const std::vector<int64_t>& dims,
617 618 619 620 621 622 623
                          mkldnn::algorithm algorithm, float alpha, float beta,
                          const MKLDNNMemoryFormat fmt,
                          const MKLDNNMemoryFormat diff_fmt,
                          const platform::MKLDNNDeviceContext& dev_ctx,
                          platform::Place cpu_place,
                          const std::string& unique_name)

624 625 626
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
627
            platform::CreateKey(dev_ctx, dims, "a", algorithm, unique_name)) {
628 629 630 631 632 633 634
    auto diff_dst_md = platform::MKLDNNMemDesc(
        dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
    auto src_md =
        platform::MKLDNNMemDesc(dims, platform::MKLDNNGetDataType<T>(), fmt);

    this->AcquireBackwardPrimitiveDescriptor(algorithm, diff_dst_md, src_md,
                                             alpha, beta);
635
  }
636

637 638 639
  std::shared_ptr<mkldnn::memory> AcquireBackwardSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
640
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
641 642
                                            to_void_cast<T>(input_data),
                                            "@bwd-src_mem_p");
643 644 645
  }
};

J
Jacek Czaja 已提交
646 647 648
template <typename T>
class LRNMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward> {
649
 public:
650
  LRNMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
J
Jacek Czaja 已提交
651
                   const platform::MKLDNNDeviceContext& dev_ctx,
652 653 654
                   const mkldnn::engine mkldnn_engine,
                   platform::Place cpu_place, const Tensor* input,
                   const std::string& unique_name)
655

J
Jacek Czaja 已提交
656
      : platform::MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward>(
657
            dev_ctx, mkldnn_engine, cpu_place,
658
            platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
                                unique_name)) {
    if (!this->isCached()) {
      const int n = ctx.Attr<int>("n");
      // MKL-DNN implements LRN in a caffe way:
      // http://caffe.berkeleyvision.org/tutorial/layers/lrn.html
      // Where sum of squares is divided by size of normalization window
      // this is not the case for PaddlePaddle LRN.
      // Hence we need to compensate for this diffrence by
      // multipliing alpha by size of window(n)
      const float alpha = ctx.Attr<float>("alpha") * static_cast<float>(n);
      const float beta = ctx.Attr<float>("beta");
      const float k = ctx.Attr<float>("k");
      bool is_test = ctx.Attr<bool>("is_test");

      auto dims = paddle::framework::vectorize(input->dims());

      auto src_md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(),
                                         input->format());

      this->AcquireForwardPrimitiveDescriptor(
          is_test ? mkldnn::prop_kind::forward_inference
                  : mkldnn::prop_kind::forward_training,
          mkldnn::algorithm::lrn_across_channels, src_md, n, alpha, beta, k);
    }
683 684
  }

A
Adam 已提交
685 686
  LRNMKLDNNHandler(const std::vector<int64_t>& dims, const int n,
                   const float alpha, const float beta, const float k,
J
Jacek Czaja 已提交
687 688 689 690
                   const MKLDNNMemoryFormat fmt,
                   const MKLDNNMemoryFormat diff_fmt,
                   const platform::MKLDNNDeviceContext& dev_ctx,
                   platform::Place cpu_place, const std::string& unique_name)
691

J
Jacek Czaja 已提交
692 693
      : platform::MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
694
            platform::CreateKey(dev_ctx, dims, unique_name)) {
J
Jacek Czaja 已提交
695 696 697 698
    auto src_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);
    auto diff_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
699

J
Jacek Czaja 已提交
700
    this->AcquireBackwardPrimitiveDescriptor(
A
Adam 已提交
701 702
        mkldnn::algorithm::lrn_across_channels, src_md, diff_md, n, alpha, beta,
        k);
703 704
  }

J
Jacek Czaja 已提交
705 706 707
  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(
      framework::Tensor* workspace) {
    T* ptr = workspace->mutable_data<T>(
A
Adam 已提交
708 709 710
        this->place_, this->fwd_pd_->workspace_desc().get_size());
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->workspace_desc(),
                                            ptr, "@wrk_mem_p");
J
Jacek Czaja 已提交
711 712 713 714 715
  }

  std::shared_ptr<mkldnn::memory> AcquireBackwardWorkspaceMemory(
      const framework::Tensor* workspace) {
    const T* workspace_data = workspace->data<T>();
A
Adam 已提交
716 717 718
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->workspace_desc(),
                                            to_void_cast<T>(workspace_data),
                                            "@bwd-wrk_mem_p");
J
Jacek Czaja 已提交
719
  }
720 721
};

722 723 724
template <typename T>
class PoolingMKLDNNHandler : public MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                                   mkldnn::pooling_backward> {
725
 public:
726 727 728 729 730
  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
                       const MKLDNNDeviceContext& dev_ctx,
                       const mkldnn::engine mkldnn_engine,
                       platform::Place cpu_place, const Tensor* input,
                       Tensor* output, const std::string& unique_name)
731 732 733
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
734
            platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
735 736 737 738 739
                                framework::ToMKLDNNDataType(input->type()),
                                unique_name)) {
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                        platform::errors::InvalidArgument(
G
GaoWei8 已提交
740
                            "Wrong layout set for Input tensor."));
741 742
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
G
GaoWei8 已提交
743
                            "Wrong format set for Input tensor."));
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760

      const std::string pooling_type = ctx.Attr<std::string>("pooling_type");

      std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
      std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      const bool global_pooling = ctx.Attr<bool>("global_pooling");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");

      // Only 2D pooling is supported now
G
GaoWei8 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
      PADDLE_ENFORCE_EQ(
          ksize.size(), 2,
          platform::errors::InvalidArgument(
              "The ksize must be 2D, i.e. 2D pooling, but received %dD.",
              ksize.size()));
      PADDLE_ENFORCE_EQ(
          pooling_type == "max" || pooling_type == "avg", true,
          platform::errors::InvalidArgument(
              "The pooling_type must be 'max' or 'avg', but received %s.",
              pooling_type));
      PADDLE_ENFORCE_EQ(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input dim must be with 4, i.e. NCHW, but received %d.",
              input->dims().size()));
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

      const auto input_dims = input->dims();
      framework::DDim data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());

      if (global_pooling) {
        operators::UpdateKsize(&ksize, data_dims);
      }

      operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                               data_dims, strides, ksize);

      const auto src_tz = paddle::framework::vectorize(input->dims());
      const auto dst_tz = paddle::framework::vectorize(output->dims());

      const auto is_test = ctx.Attr<bool>("is_test");

      const auto dt = framework::ToMKLDNNDataType(input->type());
      const auto fmt = input->format();

      const auto exclude_padding = ctx.Attr<bool>("exclusive");

      const auto src_md = mkldnn::memory::desc(src_tz, dt, fmt);
      /* create memory descriptor for pooling without specified format
       * ('any') which lets a primitive (pooling in this case) choose
       * the memory format preferred for best performance
       */

      const auto dst_md =
          platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any);

      auto mkldnn_paddings = ToMkldnnPadding(paddings);

      const bool ceil_mode = ctx.Attr<bool>("ceil_mode");

      if (ceil_mode) {
        CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                          mkldnn_paddings[1]);
      }
815 816 817

      ComputeAdaptivePoolParameters(ctx, src_tz, ksize, strides);

818 819 820 821 822 823 824 825 826 827
      this->AcquireForwardPrimitiveDescriptor(
          is_test ? mkldnn::prop_kind::forward_inference
                  : mkldnn::prop_kind::forward_training,
          pooling_type == "max"
              ? mkldnn::algorithm::pooling_max
              : (exclude_padding
                     ? mkldnn::algorithm::pooling_avg_exclude_padding
                     : mkldnn::algorithm::pooling_avg_include_padding),
          src_md, dst_md, strides, ksize, mkldnn_paddings[0],
          mkldnn_paddings[1]);
828
    }
829 830 831
  }

  PoolingMKLDNNHandler(
A
Adam 已提交
832 833 834 835 836 837
      const std::vector<int64_t>& diff_dst_dims,
      const std::vector<int64_t>& diff_src_dims,
      const std::vector<int64_t>& ksize, const std::vector<int64_t>& strides,
      const std::vector<int64_t>& paddings, const std::string& pooling_type,
      bool ceil_mode, const MKLDNNMemoryFormat fmt,
      const MKLDNNMemoryFormat diff_dst_fmt, mkldnn::memory::data_type dt,
838
      const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place,
839
      const std::string& unique_name, bool exclude_padding)
840 841 842
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
843
            platform::CreateKey(dev_ctx, diff_src_dims, dt, unique_name)) {
844 845 846 847 848 849
    auto diff_dst_md = mkldnn::memory::desc(
        diff_dst_dims, platform::MKLDNNGetDataType<T>(), diff_dst_fmt);
    auto diff_src_md =
        mkldnn::memory::desc(diff_src_dims, platform::MKLDNNGetDataType<T>(),
                             MKLDNNMemoryFormat::any);

850 851
    auto mkldnn_paddings = ToMkldnnPadding(paddings);

852
    this->AcquireBackwardPrimitiveDescriptor(
853 854 855 856 857
        pooling_type == "max"
            ? mkldnn::algorithm::pooling_max
            : (exclude_padding
                   ? mkldnn::algorithm::pooling_avg_exclude_padding
                   : mkldnn::algorithm::pooling_avg_include_padding),
858
        diff_src_md, diff_dst_md, strides, ksize, mkldnn_paddings[0],
A
Adam 已提交
859
        mkldnn_paddings[1]);
860 861 862
  }

  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(void) {
A
Adam 已提交
863
    mkldnn::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
864 865 866
    // Pooling PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
867 868 869
    auto local_key = this->key_common_ + "@workspace";
    auto mem_p = std::static_pointer_cast<mkldnn::memory>(
        this->dev_ctx_.GetBlob(local_key));
870 871 872 873
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
874 875
      mem_p = std::static_pointer_cast<mkldnn::memory>(
          this->dev_ctx_.GetBlob(local_key));
876
      if (mem_p == nullptr) {
A
Adam 已提交
877
        mem_p = std::make_shared<mkldnn::memory>(workspace_md, this->engine_);
878
        this->dev_ctx_.SetBlob(local_key, mem_p);
879 880 881 882 883
      }
    }
    return mem_p;
  }

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
  static void ComputeAdaptivePoolParameters(
      const paddle::framework::ExecutionContext& ctx,
      const std::vector<int64_t>& src_tz, std::vector<int64_t>& ksize,
      std::vector<int64_t>& strides) {
    if (ctx.Attr<bool>("adaptive")) {
      // (jczaja): oneDNN is supporting only unchangable in size pool window
      PADDLE_ENFORCE_EQ(
          src_tz[src_tz.size() - 1] % ksize[1], 0,
          platform::errors::Unimplemented(
              "Input dim must be divisible by corressponding ksize dim."));
      PADDLE_ENFORCE_EQ(
          src_tz[src_tz.size() - 2] % ksize[0], 0,
          platform::errors::Unimplemented(
              "Input dim must be divisible by corressponding ksize dim."));
      ksize[0] = src_tz[src_tz.size() - 2] / ksize[0];
      ksize[1] = src_tz[src_tz.size() - 1] / ksize[1];
      strides[0] = ksize[0];
      strides[1] = ksize[1];
    }
  }

905 906 907 908 909 910 911
 private:
  static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                        int padding, int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
A
Adam 已提交
912 913 914 915
      const std::vector<int64_t>& src_tz, const std::vector<int64_t>& dst_tz,
      const std::vector<int64_t>& kernel_size,
      const std::vector<int64_t>& paddings, const std::vector<int64_t>& strides,
      std::vector<int64_t>& right_bot_padding) {  // NOLINT
916 917 918 919
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                             paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
J
Jacek Czaja 已提交
920
        right_bot_padding[i] += strides[i] - 1;
921 922 923 924 925
      }
    }
  }
};

926
template <typename T>
927 928
class TransposeMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
929 930
  TransposeMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                         std::vector<int>& axis,      // NOLINT
931 932 933 934
                         const platform::MKLDNNDeviceContext& dev_ctx,
                         mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
935 936 937 938
        axis_(axis),
        logical_axis_(dims.size(), 0) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
939
      const MKLDNNMemoryFormat& fmt, void* ptr) {
940 941 942 943 944 945 946 947 948
    auto local_key = key_ + "@user_src_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Make memory descriptor using input format, unless it
      // cannot be trusted (nchw) then make up memory fmt manually
      for (size_t i = 0; i < logical_axis_.size(); ++i) {
        logical_axis_[i] = i;
      }
949

A
Adam 已提交
950
      auto src_md = fmt != MKLDNNMemoryFormat::nchw
951
                        ? platform::MKLDNNMemDesc(
952
                              dims_, platform::MKLDNNGetDataType<T>(), fmt)
953
                        : Axis2MemoryDesc(dims_, logical_axis_);
A
Adam 已提交
954
      mem_p = std::make_shared<mkldnn::memory>(src_md, engine_, ptr);
955 956 957 958 959 960
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }
961 962 963 964 965 966 967

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output,
                                                   platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
968
      auto dst_md = Axis2MemoryDesc(dims_, axis_);
969

A
Adam 已提交
970
      auto dst_data = output->mutable_data<T>(place, dst_md.get_size());
971

A
Adam 已提交
972
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
973 974
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
975
      auto dst_data = output->mutable_data<T>(place);
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireTranspose(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@transpose_p";
    auto transpose_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (transpose_p == nullptr) {
      transpose_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, transpose_p);
    }
    return transpose_p;
  }

 protected:
A
Adam 已提交
996 997 998 999
  mkldnn::memory::desc Axis2MemoryDesc(std::vector<int64_t>& nchw_tz,  // NOLINT
                                       std::vector<int>& axis          // NOLINT
                                       ) {
    size_t ndims = axis.size();
1000

A
Adam 已提交
1001
    std::vector<int64_t> strides(ndims);
1002
    unsigned int total_stride = 1;
A
Adam 已提交
1003 1004
    for (int i = ndims - 1; i >= 0; --i) {
      strides[axis[i]] = total_stride;
1005 1006
      total_stride *= nchw_tz[axis[i]];
    }
A
Adam 已提交
1007 1008 1009 1010
    mkldnn::memory::desc mem_d(nchw_tz, platform::MKLDNNGetDataType<T>(),
                               strides);

    return mem_d;
1011 1012 1013
  }

 private:
A
Adam 已提交
1014
  std::vector<int64_t> dims_;
1015
  std::vector<int> axis_;
1016
  std::vector<int> logical_axis_;
1017 1018
};

1019 1020
class ReorderMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
1021
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
                       framework::proto::VarType::Type vtype,
                       mkldnn::memory::data_type dtype,
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
        vtype_(vtype),
        dtype_(dtype) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
1032
      const MKLDNNMemoryFormat& fmt, void* ptr) {
1033
    return this->AcquireMemory(dims_, dtype_, fmt, ptr, "@user_src_mem_p");
1034 1035 1036
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
1037
      framework::Tensor* output, const MKLDNNMemoryFormat& fmt,
1038 1039 1040 1041 1042 1043 1044 1045 1046
      platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_, fmt);

      auto dst_data = output->mutable_data(place, vtype_);

A
Adam 已提交
1047
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      auto dst_data = output->mutable_data(place, vtype_);
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireReorder(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@reorder_p";
    auto reorder_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, reorder_p);
    }
    return reorder_p;
  }

 private:
A
Adam 已提交
1071
  std::vector<int64_t> dims_;
1072 1073 1074 1075
  framework::proto::VarType::Type vtype_;
  mkldnn::memory::data_type dtype_;
};

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
template <typename T>
struct convolutional_algorithm;

template <>
struct convolutional_algorithm<mkldnn::convolution_forward> {
  static constexpr mkldnn::algorithm T = mkldnn::algorithm::convolution_direct;
};

template <>
struct convolutional_algorithm<mkldnn::deconvolution_forward> {
  static constexpr mkldnn::algorithm T =
      mkldnn::algorithm::deconvolution_direct;
};

J
Jacek Czaja 已提交
1090 1091 1092
template <class forward_t, class backward_data_t, class backward_weights_t>
class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
 public:
1093 1094 1095 1096
  ConvMKLDNNTemplateHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                            mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

1097 1098 1099 1100 1101 1102 1103 1104 1105
  // TODO(jczaja): remove after conv int8 is adapted
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

J
Jacek Czaja 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      std::shared_ptr<typename backward_data_t::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<typename backward_weights_t::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

A
Adam 已提交
1123
  size_t GetDstMemorySize() const { return conv_pd_->dst_desc().get_size(); }
J
Jacek Czaja 已提交
1124

1125
  MKLDNNMemoryFormat GetDstFormat() const {
A
Adam 已提交
1126
    return paddle::platform::GetMKLDNNFormat(conv_pd_->dst_desc());
J
Jacek Czaja 已提交
1127 1128 1129
  }

  size_t GetDiffWeightsMemorySize() const {
A
Adam 已提交
1130
    return conv_bwd_weights_pd_->diff_weights_desc().get_size();
J
Jacek Czaja 已提交
1131 1132 1133
  }

  size_t GetDiffSourceMemorySize() const {
A
Adam 已提交
1134
    return conv_bwd_data_pd_->diff_src_desc().get_size();
J
Jacek Czaja 已提交
1135 1136 1137 1138 1139
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1140 1141
    auto src_pd = conv_bwd_weights_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1142 1143 1144 1145 1146 1147 1148
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1149 1150
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1151 1152 1153 1154 1155 1156 1157
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
A
Adam 已提交
1158
        conv_bwd_weights_pd_->diff_weights_desc(), ptr, "@diff_weights_mem_p");
J
Jacek Czaja 已提交
1159 1160
  }

1161 1162 1163 1164 1165 1166
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_desc(), "@diff_weights_mem_p");
  }

J
Jacek Czaja 已提交
1167 1168 1169
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1170 1171
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1172 1173 1174 1175 1176 1177 1178
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1179 1180
    auto weights_pd = conv_bwd_data_pd_->weights_desc();
    auto user_pd = user_weights_memory_p->get_desc();
J
Jacek Czaja 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
A
Adam 已提交
1201 1202
    return this->AcquireMemoryFromPrimitive(conv_bwd_data_pd_->diff_src_desc(),
                                            ptr, "@diff_src_mem_p");
J
Jacek Czaja 已提交
1203 1204 1205
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
A
Adam 已提交
1206
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_desc(), ptr,
J
Jacek Czaja 已提交
1207 1208 1209 1210 1211 1212
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1213 1214
    auto src_pd = conv_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1215 1216 1217 1218
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

A
Adam 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemory(
      const mkldnn::memory::desc& md, void* ptr,
      user_function custom_func = {}) {
    return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func);
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_bias_mem_p");
  }

J
Jacek Czaja 已提交
1230 1231 1232
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
1233 1234
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
A
Adam 已提交
1235 1236
    auto user_weights_pd = user_weights_memory_p->get_desc();
    auto weights_pd = conv_pd_->weights_desc();
1237 1238 1239
    return this->AcquireMemory(
        weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p",
        pipeline, is_persistent, is_INT8, scale_data, mask);
J
Jacek Czaja 已提交
1240 1241 1242 1243
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
1244 1245 1246 1247
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
A
Adam 已提交
1248 1249
    auto user_bias_pd = user_bias_memory_p->get_desc();
    auto bias_pd = conv_pd_->bias_desc();
J
Jacek Czaja 已提交
1250
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
1251 1252
                               "@bias_mem_p", pipeline, is_persistent, is_INT8,
                               scale_data, mask);
J
Jacek Czaja 已提交
1253 1254
  }

1255
  mkldnn::primitive_attr CreatePostOps(
1256 1257
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
1258
      float sum_scale = 1.0f) const {
1259 1260
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
1261 1262 1263 1264
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
1265 1266 1267 1268 1269 1270
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
1271
      post_operations.append_sum(sum_scale);
1272 1273 1274
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
1275
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
1276 1277
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
1278
                                     fuse_alpha, fuse_beta);
1279
    } else if (fuse_activation == "relu6") {
1280 1281 1282
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
1283
                                     fuse_alpha, fuse_beta);
1284 1285 1286 1287
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
1288
    }
1289 1290 1291 1292 1293 1294 1295 1296
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::shared_ptr<typename forward_t::primitive_desc>
  AcquireConvolutionPrimitiveDescriptor(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
      boost::optional<const mkldnn::memory::desc&> bias,
A
Adam 已提交
1297
      const mkldnn::memory::desc& dst, const std::vector<int64_t>& strides,
1298
      const std::vector<int64_t>& dilations,
A
Adam 已提交
1299
      const std::vector<int64_t>& paddings, const mkldnn::engine& engine,
1300 1301
      const std::string& fuse_activation, float fuse_alpha, float fuse_beta,
      const bool fuse_residual_conn, mkldnn::prop_kind fwd_prop_kind,
1302 1303
      const std::vector<float> output_shift_scale = {},
      const float sum_scale = 1.0f) {
1304 1305 1306 1307
    // Conv PD has to be passed to Grad op that
    // may be exxecuted by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_conv_pd = key_common_ + "@conv_pd";
1308

1309
    conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
1310 1311
        dev_ctx_.GetBlob(key_conv_pd));

1312 1313 1314 1315 1316 1317 1318 1319 1320
    if (conv_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);

      conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
          dev_ctx_.GetBlob(key_conv_pd));
      if (conv_pd_ == nullptr) {
        mkldnn::memory::dims stride_dims = strides;
1321
        mkldnn::memory::dims dilations_dims = dilations;
1322
        auto mkldnn_paddings = ToMkldnnPadding(paddings);
1323 1324

        auto conv_desc =
A
Adam 已提交
1325 1326
            bias ? typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
1327
                       src, weights, *bias, dst, stride_dims, dilations_dims,
A
Adam 已提交
1328 1329 1330
                       mkldnn_paddings[0], mkldnn_paddings[1])
                 : typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
1331 1332
                       src, weights, dst, stride_dims, dilations_dims,
                       mkldnn_paddings[0], mkldnn_paddings[1]);
1333

1334
        mkldnn::primitive_attr conv_attr =
1335 1336
            CreatePostOps(fuse_activation, fuse_alpha, fuse_beta,
                          fuse_residual_conn, output_shift_scale, sum_scale);
1337 1338 1339 1340 1341 1342

        conv_pd_.reset(new typename forward_t::primitive_desc(
            conv_desc, conv_attr, engine));
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx_.SetBlob(key_conv_pd, conv_pd_);
      }
1343 1344 1345 1346 1347
    }

    return conv_pd_;
  }

A
Adam 已提交
1348
  std::shared_ptr<forward_t> AcquireConvolution() {
J
Jacek Czaja 已提交
1349 1350 1351 1352
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_p == nullptr) {
A
Adam 已提交
1353
      conv_p = std::make_shared<forward_t>(*conv_pd_);
J
Jacek Czaja 已提交
1354 1355 1356 1357 1358 1359

      dev_ctx_.SetBlob(prim_key, conv_p);
    }
    return conv_p;
  }

A
Adam 已提交
1360
  std::shared_ptr<backward_weights_t> AcquireConvolutionBackwardWeights() {
J
Jacek Czaja 已提交
1361 1362 1363 1364 1365
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p = std::static_pointer_cast<backward_weights_t>(
        dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
A
Adam 已提交
1366 1367
      conv_bwd_weights_p =
          std::make_shared<backward_weights_t>(*conv_bwd_weights_pd_);
J
Jacek Czaja 已提交
1368 1369 1370 1371 1372
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    }
    return conv_bwd_weights_p;
  }

A
Adam 已提交
1373
  std::shared_ptr<backward_data_t> AcquireConvolutionBackwardData() {
J
Jacek Czaja 已提交
1374 1375 1376 1377
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<backward_data_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_data_p == nullptr) {
A
Adam 已提交
1378
      conv_bwd_data_p = std::make_shared<backward_data_t>(*conv_bwd_data_pd_);
J
Jacek Czaja 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    }
    return conv_bwd_data_p;
  }

 private:
  std::shared_ptr<typename forward_t::primitive_desc> conv_pd_;
  std::shared_ptr<typename backward_weights_t::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<typename backward_data_t::primitive_desc> conv_bwd_data_pd_;
};

using ConvMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::convolution_forward,
                              mkldnn::convolution_backward_data,
                              mkldnn::convolution_backward_weights>;

using ConvTransposeMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::deconvolution_forward,
                              mkldnn::deconvolution_backward_data,
                              mkldnn::deconvolution_backward_weights>;
1400

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
  return dst_memory_p;
}

template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const framework::Tensor* residual_param,
    const mkldnn::memory::desc& user_residual_md,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::vector<mkldnn::primitive>* pipeline) {
  const T* residual_param_data = residual_param->data<T>();
1420 1421 1422 1423
  PADDLE_ENFORCE_NOT_NULL(
      residual_param_data,
      platform::errors::PreconditionNotMet("Residual parameter is required for "
                                           "the DNNL conv+elementwise_add "
G
GaoWei8 已提交
1424
                                           "fusion, but now it is missing."));
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
  std::shared_ptr<mkldnn::memory> user_residual_memory_p =
      handler->AcquireResidualDataMemory(user_residual_md,
                                         to_void_cast<T>(residual_param_data));
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromResidualDataMemory(
          user_residual_memory_p, to_void_cast<T>(output_data), *pipeline);
  return dst_memory_p;
}

template <typename T>
static void SetDstMemoryHandler(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::shared_ptr<mkldnn::memory> dst_memory_p) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  dst_memory_p->set_data_handle(to_void_cast<T>(output_data));
}

1445 1446 1447
template <typename T>
static void SetDstMemoryQuantized(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
A
Adam 已提交
1448 1449
    std::vector<int64_t> dst_tz, const mkldnn::engine& engine,
    std::shared_ptr<mkldnn::memory::desc>& dst_md,  // NOLINT
1450 1451
    std::shared_ptr<mkldnn::memory>& dst_memory,    // NOLINT
    MKLDNNMemoryFormat output_format) {
1452 1453
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
1454
  MKLDNNMemoryFormat dst_fmt;
G
GaoWei8 已提交
1455 1456 1457 1458
  PADDLE_ENFORCE_LE(dst_dims, 5, platform::errors::InvalidArgument(
                                     "Dst memory for quantization can not have "
                                     "dims > 5. But received dst_dims is %d.",
                                     dst_dims));
1459
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format);
1460

A
Adam 已提交
1461
  auto tmp_dst_md = platform::MKLDNNMemDesc(
1462
      {dst_tz}, paddle::framework::ToMKLDNNDataType(
1463
                    framework::DataTypeTrait<T>::DataType()),
1464
      dst_fmt);
A
Adam 已提交
1465 1466 1467
  dst_md.reset(new mkldnn::memory::desc(tmp_dst_md));
  dst_memory.reset(
      new mkldnn::memory(*dst_md, engine, to_void_cast<T>(output_data)));
1468 1469
}

J
Jacek Czaja 已提交
1470 1471
}  // namespace platform
}  // namespace paddle