conv_transpose_op.cc 17.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_transpose_op.h"
S
Siddharth Goyal 已提交
16 17
#include <string>
#include <vector>
C
chengduoZH 已提交
18

J
Jacek Czaja 已提交
19 20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
23 24 25
namespace paddle {
namespace operators {

C
chengduoZH 已提交
26
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
27
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
28
                 "Input(Input) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
29
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
30
                 "Input(Filter) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
31
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
32
                 "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
33 34 35

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
36 37
  std::vector<int> output_size =
      ctx->Attrs().Get<std::vector<int>>("output_size");
C
chengduoZH 已提交
38 39
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
40
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
Y
Yibing Liu 已提交
41
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
42

C
chengduoZH 已提交
43 44 45 46 47 48 49 50
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "ConvTransposeOp intput should be 4-D or 5-D tensor.");
  PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                    "ConvTransposeOp input dimension and filter dimension "
                    "should be the same.");
  PADDLE_ENFORCE(in_dims.size() - strides.size() == 2U,
                 "ConvTransposeOp input dimension and strides dimension should "
                 "be consistent.");
51 52 53 54
  if (output_size.size())
    PADDLE_ENFORCE_EQ(output_size.size(), strides.size(),
                      "ConvTransposeOp output_size dimension and strides "
                      "dimension should be the same.");
C
chengduoZH 已提交
55
  PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
C
chengduoZH 已提交
56
                    "ConvTransposeOp paddings dimension and strides "
C
chengduoZH 已提交
57
                    "dimension should be the same.");
C
chengduoZH 已提交
58 59 60
  PADDLE_ENFORCE_EQ(paddings.size(), dilations.size(),
                    "ConvTransposeOp paddings dimension and dilations "
                    "dimension should be the same.");
C
chengduoZH 已提交
61
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
Y
Yibing Liu 已提交
62
                    "In ConvTransposeOp, The number of input channels should "
63
                    "be equal to the number of filter's channels.");
C
chengduoZH 已提交
64

Y
Yibing Liu 已提交
65
  std::vector<int64_t> output_shape({in_dims[0], filter_dims[1] * groups});
C
chengduoZH 已提交
66
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
67
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
68 69 70 71 72 73 74 75 76 77 78
    auto infer_shape =
        (in_dims[i + 2] - 1) * strides[i] - 2 * paddings[i] + filter_extent;
    if (output_size.size()) {
      PADDLE_ENFORCE((output_size[i] >= infer_shape &&
                      output_size[i] < infer_shape + strides[i]),
                     "ConvTransposeOp output_size should be "
                     "in appropriate range.");
      output_shape.push_back(output_size[i]);
    } else {
      output_shape.push_back(infer_shape);
    }
C
chengduoZH 已提交
79
  }
C
chengduoZH 已提交
80
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
81 82
}

83 84
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
J
Jacek Czaja 已提交
85 86 87
  framework::LibraryType library_{framework::LibraryType::kPlain};
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
88
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
89
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
90 91 92 93
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
J
Jacek Czaja 已提交
94 95 96
    if (use_cudnn) {
      library_ = framework::LibraryType::kCUDNN;
    }
C
chengduoZH 已提交
97 98
  }
#endif
J
Jacek Czaja 已提交
99 100 101 102 103
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
104
  }
J
Jacek Czaja 已提交
105
#endif
106

Y
Yu Yang 已提交
107 108
  return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                 ctx.GetPlace(), layout_, library_);
109 110
}

Y
Yu Yang 已提交
111
void Conv2DTransposeOpMaker::Make() {
J
Jacek Czaja 已提交
112 113 114 115
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
116 117 118 119
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator. "
      "The format of input tensor is NCHW. Where N is batch size, C is the "
C
chengduoZH 已提交
120 121
      "number of input channels, H is the height of the feature, and "
      "W is the width of the feature.");
C
chengduoZH 已提交
122 123 124 125 126 127 128 129
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
130 131 132 133 134 135
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();

C
chengduoZH 已提交
136
  AddOutput("Output",
C
chengduoZH 已提交
137
            "(Tensor) The output tensor of convolution transpose operator. "
C
chengduoZH 已提交
138
            "The format of output tensor is also NCHW.");
139 140 141 142
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
Y
Yibing Liu 已提交
143 144 145 146
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution "
               "transpose operator. ")
      .SetDefault(1);
C
chengduoZH 已提交
147 148 149 150 151
  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
152 153
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
154
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
155
      "convolution transpose operator.")
C
chengduoZH 已提交
156
      .SetDefault({1, 1});
C
chengduoZH 已提交
157 158
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
159
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
160
      "transpose operator.")
C
chengduoZH 已提交
161
      .SetDefault({0, 0});
162 163 164 165
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
J
Jacek Czaja 已提交
166 167 168 169 170
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
      .SetDefault(4096);
C
chengduoZH 已提交
186
  AddComment(R"DOC(
C
chengduoZH 已提交
187 188
Convolution2D Transpose Operator.

C
chengduoZH 已提交
189
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
190
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
191
parameters is checked in the infer-shape.
C
chengduoZH 已提交
192 193 194 195 196 197 198
Input(Input) and output(Output) are in NCHW format. Where N is batchsize, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
199
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
200

Y
update  
yi.wu 已提交
201
For an example:
C
chengduoZH 已提交
202
  Input:
C
chengduoZH 已提交
203 204
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
205
  Output:
C
chengduoZH 已提交
206 207 208
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
209 210
       H_{out} = (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
C
chengduoZH 已提交
211
  $$
C
chengduoZH 已提交
212 213 214
)DOC");
}

Y
Yu Yang 已提交
215
void Conv3DTransposeOpMaker::Make() {
C
chengduoZH 已提交
216 217 218 219 220 221
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator."
           "The format of input tensor is NCDHW. Where N is batch size, C is "
           "the number of channels, D is the depth of the feature, H is the "
           "height of the feature, and "
           "W is the width of the feature.");
C
chengduoZH 已提交
222 223
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
224 225 226
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
227 228
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
229
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
230
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
231 232 233 234
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
C
chengduoZH 已提交
235 236
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
237 238 239 240
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
C
chengduoZH 已提交
241 242 243 244 245 246
  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
247
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
248
                            "(vector<int> default:{1, 1, 1}), the "
249
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
250
                            "convolution transpose operator.")
C
chengduoZH 已提交
251
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
252
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
253
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
254
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
255
      .SetDefault({0, 0, 0});
256 257 258 259
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution3d "
               "transpose operator. ")
      .SetDefault(1);
260 261 262 263
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
264 265 266
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
      .SetDefault(4096);
C
chengduoZH 已提交
282
  AddComment(R"DOC(
C
chengduoZH 已提交
283 284
Convolution3D Transpose Operator.

C
chengduoZH 已提交
285
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
286
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
287
parameters is checked in the infer-shape.
C
chengduoZH 已提交
288 289 290 291 292 293 294 295
Input(Input) and output(Output) are in NCDHW format. Where N is batch size, C is the
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
296
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
297

298
Example:
C
chengduoZH 已提交
299
  Input:
C
chengduoZH 已提交
300 301
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
302
  Output:
C
chengduoZH 已提交
303 304 305
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
306 307 308
       D_{out} = (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\
       H_{out} = (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
C
chengduoZH 已提交
309
  $$
C
chengduoZH 已提交
310 311 312
)DOC");
}

C
chengduoZH 已提交
313
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
314 315 316 317 318 319 320 321 322 323
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

324 325 326
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
327
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
328 329 330 331 332 333
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
334 335 336 337 338 339 340 341 342
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
Y
Yu Yang 已提交
343 344
  return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                 ctx.GetPlace(), layout_, library_);
345 346
}

C
chengduoZH 已提交
347 348 349 350
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
351

352
// conv2d_transpose
Y
Yang Yang 已提交
353 354
REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
355 356
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
357 358

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
359
    conv2d_transpose,
Q
QI JUN 已提交
360 361
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
362
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
363
    conv2d_transpose_grad,
Q
QI JUN 已提交
364 365 366
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
367

368
// conv3d_transpose
Y
Yang Yang 已提交
369 370
REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp,
                  ops::Conv3DTransposeOpMaker,
371 372
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
373 374

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
375
    conv3d_transpose,
Q
QI JUN 已提交
376 377
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
378
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
379
    conv3d_transpose_grad,
Q
QI JUN 已提交
380 381 382
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

// depthwise conv2d_transpose
REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad);

REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose_grad,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);