unary.h 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note [ Why still include the fluid headers? ]
18
#include "paddle/phi/common/int_array.h"
19 20
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
21

22
namespace phi {
23

24 25
class MetaConfig;

26
// Common InferMeta Functions for unary operators, The format like:
27
//
28 29
//   void [FunctionDesc|OpName]InferMeta(const MetaTensor& x, ..., MetaTensor*
//   out) {}
30 31 32 33
//
// NOTE: The name "InferShape" may be not appropriate. "InferMeta" may be good.
// Because functions in this file not only can infer shape, but also need
// infer lod or other useful data.
34 35
//
// The InferMeta Functions in this file are arranged in alphabetic order.
36

Z
zyfncg 已提交
37 38 39 40 41 42 43 44
void ArgMinMaxInferMeta(const MetaTensor& x,
                        int64_t axis,
                        bool keepdims,
                        bool flatten,
                        int dtype,
                        MetaTensor* out,
                        MetaConfig config = MetaConfig());

L
Linjie Chen 已提交
45 46 47 48 49 50
void ArgsortInferMeta(const MetaTensor& input,
                      int axis,
                      bool descending,
                      MetaTensor* output,
                      MetaTensor* indices);

51 52 53 54 55 56
void BatchSizeLikeInferMeta(const MetaTensor& x,
                            const std::vector<int>& shape,
                            int x_batch_size_dim,
                            int out_batch_size_dim,
                            MetaTensor* out);

57
void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out);
58

59 60
void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out);

61
void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out);
62

63 64 65 66 67 68
void CumInferMeta(const MetaTensor& x,
                  int axis,
                  bool flatten,
                  bool exclusive,
                  bool reverse,
                  MetaTensor* out);
69

Z
zyfncg 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82
void DiagInferMeta(const MetaTensor& x,
                   int offset,
                   float padding_value,
                   MetaTensor* out);

void DiagonalInferMeta(
    const MetaTensor& input, int offset, int axis1, int axis2, MetaTensor* out);

void EighInferMeta(const MetaTensor& x,
                   const std::string& uplo,
                   MetaTensor* out_w,
                   MetaTensor* out_v);

83 84
void EinsumInferMeta(const std::vector<const MetaTensor*>& inputs,
                     const std::string& equation,
85 86
                     MetaTensor* out,
                     std::vector<MetaTensor*> inner_cache);
87

H
hong 已提交
88 89 90 91
void ExpandInferMeta(const MetaTensor& x,
                     const IntArray& shape,
                     MetaTensor* out);

Z
zyfncg 已提交
92 93 94 95 96
void FlattenInferMeta(const MetaTensor& x,
                      int start_axis,
                      int stop_axis,
                      MetaTensor* out);

97 98 99 100 101 102
void FlattenWithXShapeInferMeta(const MetaTensor& x,
                                int start_axis,
                                int stop_axis,
                                MetaTensor* out,
                                MetaTensor* xshape);

103 104 105 106
void FlipInferMeta(const MetaTensor& x,
                   const std::vector<int>& axis,
                   MetaTensor* out);

107 108 109 110 111 112 113 114
void FullBatchSizeLikeInferMeta(const MetaTensor& x,
                                const std::vector<int>& shape,
                                const Scalar& val,
                                DataType dtype,
                                int x_batch_size_dim,
                                int out_batch_size_dim,
                                MetaTensor* out);

Z
zyfncg 已提交
115 116 117 118 119
void GumbelSoftmaxInferMeta(const MetaTensor& x,
                            float temperature,
                            bool hard,
                            int axis,
                            MetaTensor* out);
H
hong 已提交
120 121
void HistogramInferMeta(
    const MetaTensor& input, int64_t bins, int min, int max, MetaTensor* out);
Z
zyfncg 已提交
122

123 124
void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out);

125 126 127
void InferMetaFromVecValue(const MetaTensor& x,
                           const std::vector<int64_t>& shape,
                           MetaTensor* out);
128

W
WJJ1995 已提交
129 130
void IsEmptyInferMeta(const MetaTensor& x, MetaTensor* out);

Z
zyfncg 已提交
131 132
void IsfiniteInferMeta(const MetaTensor& input, MetaTensor* out);

133 134 135 136 137 138 139 140
void KthvalueInferMeta(const MetaTensor& x,
                       int k,
                       int axis,
                       bool keepdim,
                       MetaTensor* out,
                       MetaTensor* indices,
                       MetaConfig = MetaConfig());

141 142 143 144 145 146
void LogsumexpInferMeta(const MetaTensor& input,
                        const std::vector<int64_t>& axis,
                        bool keepdim,
                        bool reduce_all,
                        MetaTensor* out);

147 148
void MatrixPowerInferMeta(const MetaTensor& x, int n, MetaTensor* out);

149 150 151 152 153
void MatrixRankInferMeta(const MetaTensor& x,
                         bool use_default_tol,
                         bool hermitian,
                         MetaTensor* out);

154 155 156 157 158
void MaxOutInferMeta(const MetaTensor& x,
                     int groups,
                     int axis,
                     MetaTensor* out);

F
From00 已提交
159 160 161 162 163 164 165 166 167 168
void MaxPoolWithIndexInferMeta(const MetaTensor& x,
                               const std::vector<int>& kernel_size,
                               const std::vector<int>& strides,
                               const std::vector<int>& paddings,
                               bool global_pooling,
                               bool adaptive,
                               MetaTensor* out,
                               MetaTensor* mask,
                               MetaConfig config = MetaConfig());

169 170
void MeanAllInferMeta(const MetaTensor& x, MetaTensor* out);

171 172 173 174 175 176
void ModeInferMeta(const MetaTensor& x,
                   int axis,
                   bool keepdim,
                   MetaTensor* out,
                   MetaTensor* indices);

177 178 179 180
void MultinomialInferMeta(const MetaTensor& x,
                          int num_samples,
                          bool replacement,
                          MetaTensor* out);
181 182 183 184 185 186 187

void NanmedianInferMeta(const MetaTensor& x,
                        const IntArray& axes,
                        bool keep_dim,
                        MetaTensor* out,
                        MetaTensor* median_index);

H
hong 已提交
188 189 190 191 192 193
void NormInferMeta(const MetaTensor& x,
                   int axis,
                   float epsilon,
                   bool is_test,
                   MetaTensor* out,
                   MetaTensor* norm);
194

Z
zyfncg 已提交
195 196 197 198 199 200
void PadInferMeta(const MetaTensor& input,
                  const std::vector<int>& paddings,
                  float pad_value,
                  MetaTensor* out,
                  MetaConfig config = MetaConfig());

201
void Pad3dInferMeta(const MetaTensor& x,
202
                    const IntArray& paddings,
203 204 205 206 207 208
                    const std::string& mode,
                    float value,
                    const std::string& data_format,
                    MetaTensor* out,
                    MetaConfig config = MetaConfig());

Z
zyfncg 已提交
209 210 211 212 213
void PixelShuffleInferMeta(const MetaTensor& x,
                           int upscale_factor,
                           const std::string& data_format,
                           MetaTensor* out);

H
hong 已提交
214 215 216 217 218
void PixelShuffleGradInferMeta(const MetaTensor& out_grad,
                               int upscale_factor,
                               const std::string& data_format,
                               MetaTensor* x_grad);

219 220 221 222 223
void PixelUnshuffleInferMeta(const MetaTensor& x,
                             int downscale_factor,
                             const std::string& data_format,
                             MetaTensor* out);

224 225 226 227 228 229 230 231
void PNormInferMeta(const MetaTensor& x,
                    float porder,
                    int axis,
                    float epsilon,
                    bool keepdim,
                    bool asvector,
                    MetaTensor* out);

F
From00 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245
void PoolInferMeta(const MetaTensor& x,
                   const std::vector<int>& kernel_size,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   bool ceil_mode,
                   bool exclusive,
                   const std::string& data_format,
                   const std::string& pooling_type,
                   bool global_pooling,
                   bool adaptive,
                   const std::string& padding_algorithm,
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

246 247 248 249 250
void QrInferMeta(const MetaTensor& x,
                 const std::string& mode,
                 MetaTensor* q,
                 MetaTensor* r);

Z
zyfncg 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263
void RealAndImagInferMeta(const MetaTensor& x, MetaTensor* out);

void ReduceInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     MetaTensor* out);

void ReduceInferMetaBase(const MetaTensor& x,
                         const std::vector<int64_t>& axis,
                         bool keep_dim,
                         bool reduce_all,
                         MetaTensor* out);

264
void ReshapeInferMeta(const MetaTensor& x,
265
                      const IntArray& shape,
266 267 268 269
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

void ReshapeWithXShapeInferMeta(const MetaTensor& x,
270
                                const IntArray& shape,
271
                                MetaTensor* out,
272
                                MetaTensor* xshape,
273
                                MetaConfig config = MetaConfig());
274

275 276 277 278
void ReverseInferMeta(const MetaTensor& x,
                      const std::vector<int>& axis,
                      MetaTensor* out);

C
chenenquan 已提交
279
void RollInferMeta(const MetaTensor& x,
280
                   const IntArray& shifts,
C
chenenquan 已提交
281 282 283
                   const std::vector<int64_t>& axis,
                   MetaTensor* out);

284 285 286 287 288 289 290 291 292 293 294
void RReluInferMeta(const MetaTensor& x,
                    float lower,
                    float upper,
                    bool is_test,
                    MetaTensor* out,
                    MetaTensor* noise);

void RReluGradInferMeta(const MetaTensor& out_grad,
                        const MetaTensor& noise,
                        MetaTensor* x_grad);

295 296
void SetValueInferMeta(const MetaTensor& x, MetaTensor* out);

297 298
void ShapeInferMeta(const MetaTensor& input, MetaTensor* out);

Z
zyfncg 已提交
299 300 301 302 303 304 305
void ShardIndexInferMeta(const MetaTensor& in,
                         int index_num,
                         int nshards,
                         int shard_id,
                         int ignore_value,
                         MetaTensor* out,
                         MetaConfig config = MetaConfig());
306

Z
zyfncg 已提交
307
void SizeInferMeta(const MetaTensor& input, MetaTensor* out);
308

H
hong 已提交
309 310 311 312 313 314 315 316 317
void SliceRawInferMeta(const MetaTensor& input,
                       const std::vector<int64_t>& axes,
                       const IntArray& starts,
                       const IntArray& ends,
                       const std::vector<int64_t>& infer_flags,
                       const std::vector<int64_t>& decrease_axis,
                       MetaTensor* out,
                       MetaConfig config = MetaConfig());

Z
zyfncg 已提交
318
void SoftmaxInferMeta(const MetaTensor& x, int axis, MetaTensor* out);
319

Z
zyfncg 已提交
320
void SplitInferMeta(const MetaTensor& x_meta,
321
                    const IntArray& num_or_sections,
Z
zyfncg 已提交
322 323 324
                    const Scalar& axis,
                    std::vector<MetaTensor*> out,
                    MetaConfig config = MetaConfig());
325

326 327
void SqueezeInferMeta(const MetaTensor& x,
                      const std::vector<int>& axes,
328 329
                      MetaTensor* out,
                      MetaTensor* xshape);
330

331 332 333 334 335 336 337 338 339 340
void StridedSliceRawInferMeta(const MetaTensor& x,
                              const std::vector<int>& axes,
                              const IntArray& starts,
                              const IntArray& ends,
                              const IntArray& strides,
                              const std::vector<int>& infer_flags,
                              const std::vector<int>& decrease_axis,
                              MetaTensor* out,
                              MetaConfig config = MetaConfig());

341 342
void StridedSliceInferMeta(const MetaTensor& x,
                           const std::vector<int>& axes,
343 344 345
                           const IntArray& starts,
                           const IntArray& ends,
                           const IntArray& strides,
346 347 348
                           MetaTensor* out,
                           MetaConfig config = MetaConfig());

349 350 351 352 353
void SumInferMeta(const MetaTensor& x,
                  const std::vector<int64_t>& axis,
                  DataType dtype,
                  bool keep_dim,
                  MetaTensor* out);
354

Z
zyfncg 已提交
355 356 357 358 359 360 361
void SumRawInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     bool reduce_all,
                     DataType dtype,
                     MetaTensor* out);

H
hong 已提交
362 363 364 365 366 367 368
void TemporalShiftInferMeta(const MetaTensor& x,
                            int seg_num,
                            float shift_ratio,
                            const std::string& data_format,
                            MetaTensor* out,
                            MetaConfig config = MetaConfig());

Z
zyfncg 已提交
369
void TileInferMeta(const MetaTensor& x,
370
                   const IntArray& repeat_times,
Z
zyfncg 已提交
371 372 373
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

374 375 376 377 378 379 380 381 382
void TopKInferMeta(const MetaTensor& x,
                   const Scalar& k_scalar,
                   int axis,
                   bool largest,
                   bool sorted,
                   MetaTensor* out,
                   MetaTensor* indices,
                   MetaConfig config = MetaConfig());

Z
zyfncg 已提交
383 384 385
void TraceInferMeta(
    const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out);

386 387 388 389
void TransferLayoutInferMeta(const MetaTensor& x,
                             DataLayout layout,
                             MetaTensor* out);

Z
zyfncg 已提交
390 391 392
void TransposeInferMeta(const MetaTensor& x,
                        const std::vector<int>& axis,
                        MetaTensor* out);
C
Chen Weihang 已提交
393

H
hong 已提交
394 395 396 397
void TransposeGradInferMeta(const MetaTensor& x,
                            const std::vector<int>& axis,
                            MetaTensor* out);

398 399 400 401 402
void TrilTriuInferMeta(const MetaTensor& x,
                       int diagonal,
                       bool lower,
                       MetaTensor* out);

L
Leo Chen 已提交
403 404
void UnbindInferMeta(const MetaTensor& x,
                     int axis,
405
                     std::vector<MetaTensor*> outs);
Z
zyfncg 已提交
406 407 408 409 410 411 412

void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out);

// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void UnchangedInferMetaCheckAxis(const MetaTensor& x,
                                 int axis,
                                 MetaTensor* out);
C
Chen Weihang 已提交
413

414 415 416 417 418 419 420
void UnfoldInferMeta(const MetaTensor& x,
                     const std::vector<int>& kernel_sizes,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
421

C
csy0225 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
void UniqueInferMeta(const MetaTensor& x,
                     bool return_index,
                     bool return_inverse,
                     bool return_counts,
                     const std::vector<int>& axis,
                     DataType dtype,
                     MetaTensor* out,
                     MetaTensor* indices,
                     MetaTensor* index,
                     MetaTensor* counts);

void UniqueRawInferMeta(const MetaTensor& x,
                        bool return_index,
                        bool return_inverse,
                        bool return_counts,
                        const std::vector<int>& axis,
                        DataType dtype,
                        bool is_sorted,
                        MetaTensor* out,
                        MetaTensor* indices,
                        MetaTensor* index,
                        MetaTensor* counts);

445
void UnsqueezeInferMeta(const MetaTensor& x,
446
                        const IntArray& axes,
447
                        MetaTensor* out,
448
                        MetaTensor* xshape,
449
                        MetaConfig config = MetaConfig());
450

C
csy0225 已提交
451 452 453 454 455
void UnStackInferMeta(const MetaTensor& x,
                      int axis,
                      int num,
                      std::vector<MetaTensor*> outs);

H
hong 已提交
456
void OneHotRawInferMeta(const MetaTensor& x,
457
                        const Scalar& depth,
H
hong 已提交
458 459 460 461 462 463
                        DataType dtype,
                        bool allow_out_of_range,
                        MetaTensor* out);

void OneHotInferMeta(const MetaTensor& x, const Scalar& depth, MetaTensor* out);

464 465
void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out);

466 467 468 469 470
void ChannelShuffleInferMeta(const MetaTensor& x,
                             int groups,
                             const std::string& data_format,
                             MetaTensor* out);

471
}  // namespace phi