set_value_op.h 20.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <string>
#include <vector>

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/assign_value_op.h"
25
#include "paddle/fluid/operators/eigen/eigen_function.h"
26
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
27
#include "paddle/fluid/operators/slice_utils.h"
28
#include "paddle/fluid/operators/strided_slice_op.h"
29
#include "paddle/fluid/operators/utils.h"
30 31 32 33 34 35
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
using DDim = framework::DDim;

inline void GetOffsets(const DDim& big_dim, const DDim& small_dim,
                       DDim start_offset, int cur_dim,
                       std::vector<DDim>* offsets) {
  if (cur_dim == big_dim.size()) {
    offsets->push_back(start_offset);
    return;
  }
  if (small_dim[cur_dim] == big_dim[cur_dim]) {
    GetOffsets(big_dim, small_dim, start_offset, cur_dim + 1, offsets);
  } else {
    for (int i = 0; i < big_dim[cur_dim]; i++) {
      GetOffsets(big_dim, small_dim, start_offset, cur_dim + 1, offsets);
      start_offset[cur_dim] += 1;
    }
  }
}
54 55 56 57 58 59 60 61 62 63 64 65 66

inline std::string GetValueName(framework::proto::VarType::Type data_type) {
  std::string value_name;
  switch (data_type) {
    case framework::proto::VarType::INT32:
      value_name = "int32_values";
      break;
    case framework::proto::VarType::INT64:
      value_name = "int64_values";
      break;
    case framework::proto::VarType::FP32:
      value_name = "fp32_values";
      break;
67 68 69
    case framework::proto::VarType::FP64:
      value_name = "fp64_values";
      break;
70 71 72
    case framework::proto::VarType::BOOL:
      value_name = "bool_values";
      break;
73

74 75 76 77 78 79 80 81 82
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported data type(code %d) for SetValue operator, only "
          "supports bool, int32, float32 and int64.",
          data_type));
  }
  return value_name;
}

Z
zyfncg 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
// check whether the tensor with dimension of second can assign to the
// tensor with dimension of first
inline void CheckIsDimsMatch(const framework::DDim first,
                             const framework::DDim second) {
  int ignore_axis1 = 0, ignore_axis2 = 0;
  for (; ignore_axis1 < first.size(); ++ignore_axis1) {
    if (first[ignore_axis1] != 1) {
      break;
    }
  }
  for (; ignore_axis2 < second.size(); ++ignore_axis2) {
    if (second[ignore_axis2] != 1) {
      break;
    }
  }

  if (second.size() == ignore_axis2) {
    // second tensor has only one value
    return;
  }

  if (first.size() - ignore_axis1 >= second.size() - ignore_axis2) {
    auto idx1 = first.size() - 1;
    auto idx2 = second.size() - 1;
    bool is_match = true;
    for (; idx2 >= ignore_axis2; idx2--) {
      if (first[idx1--] != second[idx2] && second[idx2] != 1) {
        is_match = false;
        break;
      }
    }
    if (is_match) {
      return;
    }
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "The shape of tensor assigned value must match the shape "
      "of target shape: %d, but now shape is %d.",
      second.to_str(), first.to_str()));
}

124 125 126 127
template <typename DeviceContext, typename T>
class SetValueKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
128
    const int rank = ctx.Input<framework::LoDTensor>("Input")->dims().size();
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

    // TODO(liym27): A more elegent code to do this. C++ has to make template
    //  integer as constant, but we had better have alternative writing in the
    //  future.
    switch (rank) {
      case 1:
        SetValueCompute<1>(ctx);
        break;
      case 2:
        SetValueCompute<2>(ctx);
        break;
      case 3:
        SetValueCompute<3>(ctx);
        break;
      case 4:
        SetValueCompute<4>(ctx);
        break;
      case 5:
        SetValueCompute<5>(ctx);
        break;
      case 6:
        SetValueCompute<6>(ctx);
        break;
152 153 154
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The rank of input should be less than 7, but received %d.", rank));
155 156 157 158 159 160 161
    }
  }

 private:
  template <size_t D>
  void SetValueCompute(const framework::ExecutionContext& ctx) const {
    auto* in = ctx.Input<framework::LoDTensor>("Input");
162
    auto* value_tensor = ctx.Input<framework::LoDTensor>("ValueTensor");
163 164
    auto* out = ctx.Output<framework::LoDTensor>("Out");

165 166 167 168 169 170
    auto starts_tensor_list =
        ctx.MultiInput<framework::Tensor>("StartsTensorList");
    auto ends_tensor_list = ctx.MultiInput<framework::Tensor>("EndsTensorList");
    auto steps_tensor_list =
        ctx.MultiInput<framework::Tensor>("StepsTensorList");

171 172 173
    auto axes = ctx.Attr<std::vector<int64_t>>("axes");
    auto starts = ctx.Attr<std::vector<int64_t>>("starts");
    auto ends = ctx.Attr<std::vector<int64_t>>("ends");
174
    auto steps = ctx.Attr<std::vector<int64_t>>("steps");
175
    auto shape = ctx.Attr<std::vector<int64_t>>("shape");
176
    auto decrease_axes = ctx.Attr<std::vector<int64_t>>("decrease_axes");
Z
zyfncg 已提交
177
    auto none_axes = ctx.Attr<std::vector<int64_t>>("none_axes");
178

179
    auto dtype = in->type();
180 181 182 183 184 185 186 187 188
    if (!starts_tensor_list.empty()) {
      starts = GetDataFromTensorList<int64_t>(starts_tensor_list);
    }
    if (!ends_tensor_list.empty()) {
      ends = GetDataFromTensorList<int64_t>(ends_tensor_list);
    }
    if (!steps_tensor_list.empty()) {
      steps = GetDataFromTensorList<int64_t>(steps_tensor_list);
    }
189 190

    auto in_dims = in->dims();
191 192
    CheckAndUpdateSliceAttrs(in_dims, axes, &starts, &ends, &steps);
    auto slice_dims = GetSliceDims(in_dims, axes, starts, ends, &steps);
193
    auto decrease_slice_dims = GetDecreasedDims(slice_dims, decrease_axes);
194

Z
zyfncg 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    auto slice_dims_for_assign = decrease_slice_dims;
    if (!none_axes.empty()) {
      std::vector<int64_t> slice_dims_with_none;

      size_t none_axes_cur = 0, decrease_axes_cur = 0;
      for (int i = 0; i < slice_dims.size(); ++i) {
        while (none_axes_cur < none_axes.size() &&
               none_axes[none_axes_cur] <= i) {
          slice_dims_with_none.push_back(1);
          none_axes_cur++;
        }
        if (decrease_axes_cur < decrease_axes.size() &&
            decrease_axes[decrease_axes_cur] == i) {
          decrease_axes_cur++;
        } else {
          slice_dims_with_none.push_back(slice_dims[i]);
        }
      }
      while (none_axes_cur < none_axes.size()) {
        slice_dims_with_none.push_back(1);
        none_axes_cur++;
      }

      slice_dims_for_assign = framework::make_ddim(slice_dims_with_none);
    }

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    auto place = ctx.GetPlace();
    auto& eigen_place =
        *ctx.template device_context<DeviceContext>().eigen_device();

    // Here copy data from input to avoid data loss at PE and Graph level.
    // TODO(liym27): Speed up in the future version.
    // - Q: Why don't call ShareDataWith to speed up?
    // - A: Because it's not supported to ShareDataWith on OP's input and output
    // https://github.com/PaddlePaddle/Paddle/wiki/ShareDataWith-and-ShareBufferWith-are-prohibited-in-OP
    // - Q: Why don't delete Input, after all, the input and output are the same
    // Tensor at program level?
    // - A: If deleting Input, the graph will be complex, such as there will
    // be two ops points to the output in graph: op1 -> output <- set_value.
    // In this case, we have to find a way to handle the running order of
    // set_value is what we want.
236
    paddle::framework::TensorCopy(*in, place, out);
237

238 239 240
    Tensor slice_tensor(dtype), pad_tensor(dtype);
    slice_tensor.mutable_data<T>(slice_dims, place);
    pad_tensor.mutable_data<T>(in_dims, place);
241

242
    auto pad_e = framework::EigenTensor<T, D>::From(pad_tensor, in_dims);
243
    auto out_e = framework::EigenTensor<T, D>::From(*out);
244
    auto slice_e = framework::EigenTensor<T, D>::From(slice_tensor, slice_dims);
245 246

    // Step 1: Set the value of out at `_index` to zero
247 248 249 250 251
    slice_e.device(eigen_place) = slice_e.constant(T(0));

    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
252 253

    for (size_t i = 0; i < D; ++i) {
254 255 256
      starts_indices[i] = 0;
      ends_indices[i] = slice_dims[i];
      strides_indices[i] = 1;
257
    }
258 259 260 261 262
    for (size_t i = 0; i < axes.size(); i++) {
      int axis_index = axes[i];
      starts_indices[axis_index] = starts[i];
      ends_indices[axis_index] = ends[i];
      strides_indices[axis_index] = steps[i];
263 264 265
      if (starts[i] == ends[i]) {  // slice is empty, data will not be changed
        return;
      }
266 267
    }

268 269
    out_e.stridedSlice(starts_indices, ends_indices, strides_indices)
        .device(eigen_place) = slice_e;
270 271 272

    // Step 2: Set a tensor with the same shape as out tensor. And its data at
    // '_index' is the same as value_tensor, and data out of '_index' to zero
273

274
    // - Step 2.1 Set slice tensor with value
275 276 277 278 279 280 281 282 283 284 285 286 287

    // NOTE(liym27): [ Why resize slice_tensor here? ]
    // A: When do broadcasting on slice_tensor and value_tensor, the shape of
    // slice_tensor should be decreased dims.
    // e.g.
    //  x[:,0] = value_tensor
    // x's shape = [3, 4], value_tensor's shape = [3]
    // We get slice_dims = [3, 1],  decrease_slice_dims = [3]
    // If do broadcasting on Tensor with shape [3, 1] and [3], the result's
    // shape is [3, 3], which cross the border;
    // If do broadcasting on Tensor with shape [3] and [3], the result's shape
    // is [3], which is right.

Z
zyfncg 已提交
288
    slice_tensor.Resize(slice_dims_for_assign);
289
    if (value_tensor != nullptr) {
Z
zyfncg 已提交
290
      CheckIsDimsMatch(slice_dims_for_assign, value_tensor->dims());
291 292
      // ElementwiseComputeEx can do broadcasting
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
293
          ctx, &slice_tensor, value_tensor, -1, SubFunctor<T>(), &slice_tensor);
294 295
    } else {
      Tensor value_t(dtype);
296
      auto value_dims = framework::make_ddim(shape);
Z
zyfncg 已提交
297 298
      CheckIsDimsMatch(slice_dims_for_assign, value_dims);

299 300 301 302 303
      value_t.mutable_data<T>(value_dims, place);
      auto value_name = GetValueName(dtype);
      CopyVecotorToTensor<T>(value_name.c_str(), &value_t, ctx);
      value_t.Resize(value_dims);
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
304
          ctx, &slice_tensor, &value_t, -1, SubFunctor<T>(), &slice_tensor);
305
    }
306
    slice_tensor.Resize(slice_dims);
307

308 309 310 311
    // - Step 2.2 Pad slice tensor with 0
    pad_e.device(eigen_place) = pad_e.constant(T(0));
    pad_e.stridedSlice(starts_indices, ends_indices, strides_indices)
        .device(eigen_place) = slice_e;
312 313 314 315 316 317

    // Step 3: Set out tensor with value_tensor
    out_e.device(eigen_place) = out_e - pad_e;
  }
};

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
template <typename DeviceContext, typename T>
class SetValueGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    int rank = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims().size();

    switch (rank) {
      case 1:
        SetValueGradCompute<1>(ctx);
        break;
      case 2:
        SetValueGradCompute<2>(ctx);
        break;
      case 3:
        SetValueGradCompute<3>(ctx);
        break;
      case 4:
        SetValueGradCompute<4>(ctx);
        break;
      case 5:
        SetValueGradCompute<5>(ctx);
        break;
      case 6:
        SetValueGradCompute<6>(ctx);
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The rank of set_value_grad's input should be less than 7, but "
            "received %d.",
            rank));
    }
  }

 private:
  template <size_t D>
  void SetValueGradCompute(const framework::ExecutionContext& context) const {
    auto starts = context.Attr<std::vector<int64_t>>("starts");
    auto ends = context.Attr<std::vector<int64_t>>("ends");
    auto steps = context.Attr<std::vector<int64_t>>("steps");

    auto axes_int64 = context.Attr<std::vector<int64_t>>("axes");
    std::vector<int> axes(axes_int64.begin(), axes_int64.end());

    auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto steps_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
    auto reverse_axis = Eigen::array<bool, D>();

    auto list_new_ends_tensor =
        context.MultiInput<framework::Tensor>("EndsTensorList");
    auto list_new_starts_tensor =
        context.MultiInput<framework::Tensor>("StartsTensorList");
    auto list_new_steps_tensor =
        context.MultiInput<framework::Tensor>("StepsTensorList");

    if (list_new_starts_tensor.size() > 0) {
      starts = GetDataFromTensorList<int64_t>(list_new_starts_tensor);
    }

    if (list_new_ends_tensor.size() > 0) {
      ends = GetDataFromTensorList<int64_t>(list_new_ends_tensor);
    }

    if (list_new_steps_tensor.size() > 0) {
      steps = GetDataFromTensorList<int64_t>(list_new_steps_tensor);
    }

    auto in = context.Input<framework::Tensor>(framework::GradVarName("Out"));
    PADDLE_ENFORCE_EQ(
        in->IsInitialized(), true,
        platform::errors::PermissionDenied(
            "The input of `set_value_grad`(%s) has not been initialized",
            framework::GradVarName("Out")));
    auto grad_value = context.Output<framework::Tensor>(
        framework::GradVarName("ValueTensor"));
    auto grad_input =
        context.Output<framework::Tensor>(framework::GradVarName("Input"));
    auto in_dims = in->dims();

    auto decrease_axis_int64 =
        context.Attr<std::vector<int64_t>>("decrease_axes");
    std::vector<int> decrease_axis(decrease_axis_int64.begin(),
                                   decrease_axis_int64.end());
    std::vector<int> infer_flags(axes.size(), 1);
    std::vector<int64_t> out_dims_vector(in_dims.size(), -1);
    StridedSliceOutDims(starts, ends, steps, axes, infer_flags, in_dims,
                        decrease_axis, out_dims_vector.data(), axes.size(),
                        false);

    framework::DDim out_dims(framework::make_ddim(out_dims_vector));

    std::vector<int> reverse_vector(starts.size(), 0);
    StridedSliceFunctor(starts.data(), ends.data(), steps.data(), axes.data(),
                        reverse_vector.data(), in_dims, infer_flags,
                        decrease_axis, starts.size());

    for (size_t axis = 0; axis < D; axis++) {
      starts_indices[axis] = 0;
      ends_indices[axis] = out_dims[axis];
      steps_indices[axis] = 1;
      reverse_axis[axis] = false;
    }

    for (size_t axis = 0; axis < axes.size(); axis++) {
      int axis_index = axes[axis];
      starts_indices[axis_index] = starts[axis];
      ends_indices[axis_index] = ends[axis];
      steps_indices[axis_index] = steps[axis];
      reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false;
    }

    bool need_reverse = false;
    for (size_t axis = 0; axis < axes.size(); axis++) {
      if (reverse_vector[axis] == 1) {
        need_reverse = true;
        break;
      }
    }

    auto& dev_ctx = context.template device_context<DeviceContext>();
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    math::SetConstant<DeviceContext, T> set_zero;

    if (grad_input) {
      // Set gradient of `Input`
444
      paddle::framework::TensorCopy(*in, context.GetPlace(), grad_input);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565

      auto grad_input_t =
          framework::EigenTensor<T, D, Eigen::RowMajor,
                                 Eigen::DenseIndex>::From(*grad_input);

      framework::Tensor tmp(grad_input->type());
      tmp.mutable_data<T>(out_dims, context.GetPlace());
      set_zero(dev_ctx, &tmp, static_cast<T>(0));
      auto tmp_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                          Eigen::DenseIndex>::From(tmp);

      grad_input_t.stridedSlice(starts_indices, ends_indices, steps_indices)
          .device(place) = tmp_t;
    }
    if (grad_value) {
      grad_value->mutable_data<T>(context.GetPlace());
      set_zero(dev_ctx, grad_value, static_cast<T>(0));

      auto in_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                         Eigen::DenseIndex>::From(*in);

      if (grad_value->dims() == out_dims) {
        auto grad_value_t =
            framework::EigenTensor<T, D, Eigen::RowMajor,
                                   Eigen::DenseIndex>::From(*grad_value);
        if (need_reverse) {
          framework::Tensor tmp(grad_value->type());
          tmp.mutable_data<T>(out_dims, context.GetPlace());
          set_zero(dev_ctx, &tmp, static_cast<T>(0));
          auto tmp_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                              Eigen::DenseIndex>::From(tmp);

          tmp_t.device(place) =
              in_t.stridedSlice(starts_indices, ends_indices, steps_indices);
          grad_value_t.device(place) = tmp_t.reverse(reverse_axis);
        } else {
          grad_value_t.device(place) =
              in_t.stridedSlice(starts_indices, ends_indices, steps_indices);
        }
      } else {
        int out_dims_size = out_dims.size();
        auto grad_value_dims = grad_value->dims();
        auto fake_grad_value_dims = out_dims;

        // Create an extented shape according to the rules of broadcast.
        auto grad_value_dims_size = grad_value_dims.size();

        int num_decrease = 0;

        int decrease_axis_size = decrease_axis.size();
        for (int i = 0; i < out_dims_size; i++) {
          if (decrease_axis.end() !=
              std::find(decrease_axis.begin(), decrease_axis.end(), i)) {
            fake_grad_value_dims[i] = 1;
            num_decrease++;
          } else if (i < out_dims_size - (grad_value_dims_size +
                                          decrease_axis_size - num_decrease)) {
            fake_grad_value_dims[i] = 1;
          } else {
            auto index_grad =
                i - (out_dims_size - (grad_value_dims_size +
                                      decrease_axis_size - num_decrease));
            fake_grad_value_dims[i] = grad_value_dims[index_grad];

            PADDLE_ENFORCE_EQ((out_dims[i] == grad_value_dims[index_grad]) ||
                                  (grad_value_dims[index_grad] == 1),
                              true,
                              platform::errors::InvalidArgument(
                                  "An error occurred while calculating %s: "
                                  "[%s] can not be accumulated into [%s].",
                                  framework::GradVarName("ValueTensor"),
                                  out_dims, grad_value_dims));
          }
        }

        VLOG(3) << "Dimensions of " << framework::GradVarName("ValueTensor")
                << "([" << grad_value_dims << "])is broadcasted into ["
                << fake_grad_value_dims << "].";

        auto extent = Eigen::DSizes<Eigen::DenseIndex, D>();
        auto offset = out_dims;
        for (int i = 0; i < out_dims_size; i++) {
          offset[i] = 0;
          extent[i] = fake_grad_value_dims[i];
        }
        std::vector<DDim> offsets;
        GetOffsets(out_dims, fake_grad_value_dims, offset, 0, &offsets);

        auto grad_value_t =
            framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::
                From(*grad_value, fake_grad_value_dims);

        framework::Tensor tmp(grad_value->type());
        tmp.mutable_data<T>(out_dims, context.GetPlace());
        set_zero(dev_ctx, &tmp, static_cast<T>(0));
        auto tmp_t = framework::EigenTensor<T, D, Eigen::RowMajor,
                                            Eigen::DenseIndex>::From(tmp);

        tmp_t.device(place) =
            in_t.stridedSlice(starts_indices, ends_indices, steps_indices);

        // accumulate gradient
        for (auto offset : offsets) {
          grad_value_t.device(place) =
              grad_value_t +
              tmp_t.slice(framework::EigenDim<D>::From(offset), extent);
        }
        if (need_reverse) {
          framework::Tensor tmp_value(grad_value->type());
          tmp_value.mutable_data<T>(fake_grad_value_dims, context.GetPlace());
          auto tmp_value_t =
              framework::EigenTensor<T, D, Eigen::RowMajor,
                                     Eigen::DenseIndex>::From(tmp_value);
          tmp_value_t.device(place) = grad_value_t.reverse(reverse_axis);
          grad_value_t.device(place) = tmp_value_t;
        }
      }
    }
  }
};

566 567
}  // namespace operators
}  // namespace paddle