CTCErrorEvaluator.cpp 8.3 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Evaluator.h"
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"

namespace paddle {

/**
 * calculate sequence-to-sequence edit distance
 */
class CTCErrorEvaluator : public Evaluator {
private:
  MatrixPtr outActivations_;
  int numTimes_, numClasses_, numSequences_, blank_;
  real deletions_, insertions_, substitutions_;
  int seqClassficationError_;

  std::vector<int> path2String(const std::vector<int>& path) {
    std::vector<int> str;
    str.clear();
    int prevLabel = -1;
    for (std::vector<int>::const_iterator label = path.begin();
35 36
         label != path.end();
         label++) {
Z
zhangjinchao01 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
      if (*label != blank_ &&
          (str.empty() || *label != str.back() || prevLabel == blank_)) {
        str.push_back(*label);
      }
      prevLabel = *label;
    }
    return str;
  }

  std::vector<int> bestLabelSeq() {
    std::vector<int> path;
    path.clear();
    real* acts = outActivations_->getData();
    for (int i = 0; i < numTimes_; ++i) {
      path.push_back(std::max_element(acts + i * numClasses_,
                                      acts + (i + 1) * numClasses_) -
                     (acts + i * numClasses_));
    }
    return path2String(path);
  }

  /* "sp, dp, ip" is the weighting parameter of "substitution, deletion,
   * insertion"
   * in edit-distance error */
61 62 63 64 65
  real stringAlignment(std::vector<int>& gtStr,
                       std::vector<int>& recogStr,
                       bool backtrace = true,
                       real sp = 1.0,
                       real dp = 1.0,
Z
zhangjinchao01 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
                       real ip = 1.0) {
    std::vector<std::vector<int>> matrix;
    int substitutions, deletions, insertions;
    real distance;
    int n = gtStr.size();
    int m = recogStr.size();

    if (n == 0) {
      substitutions = 0;
      deletions = 0;
      insertions = m;
      distance = m;
    } else if (m == 0) {
      substitutions = 0;
      deletions = n;
      insertions = 0;
      distance = n;
    } else {
      substitutions = 0;
      deletions = 0;
      insertions = 0;
      distance = 0;
      // initialize the matrix
      matrix.resize(n + 1);
      for (int i = 0; i < n + 1; ++i) {
        matrix[i].resize(m + 1);
        for (int j = 0; j < m + 1; ++j) {
          matrix[i][j] = 0;
        }
      }
      for (int i = 0; i < n + 1; ++i) {
        matrix[i][0] = i;
      }
      for (int j = 0; j < m + 1; ++j) {
        matrix[0][j] = j;
      }

      // calculate the insertions, substitutions and deletions
      for (int i = 1; i < n + 1; ++i) {
        int s_i = gtStr[i - 1];
        for (int j = 1; j < m + 1; ++j) {
          int t_j = recogStr[j - 1];
          int cost = (s_i == t_j) ? 0 : 1;
          const int above = matrix[i - 1][j];
          const int left = matrix[i][j - 1];
          const int diag = matrix[i - 1][j - 1];
          const int cell = std::min(above + 1, std::min(left + 1, diag + cost));
          matrix[i][j] = cell;
        }
      }

      if (backtrace) {
        size_t i = n;
        size_t j = m;
        substitutions = 0;
        deletions = 0;
        insertions = 0;

        while (i != 0 && j != 0) {
          if (matrix[i][j] == matrix[i - 1][j - 1]) {
            --i;
            --j;
          } else if (matrix[i][j] == matrix[i - 1][j - 1] + 1) {
            ++substitutions;
            --i;
            --j;
          } else if (matrix[i][j] == matrix[i - 1][j] + 1) {
            ++deletions;
            --i;
          } else {
            ++insertions;
            --j;
          }
        }
        while (i != 0) {
          ++deletions;
          --i;
        }
        while (j != 0) {
          ++insertions;
          --j;
        }
        int diff = substitutions + deletions + insertions;
        if (diff != matrix[n][m]) {
          LOG(ERROR) << "Found path with distance " << diff
                     << " but Levenshtein distance is " << matrix[n][m];
        }

        distance = (sp * substitutions) + (dp * deletions) + (ip * insertions);
      } else {
        distance = (real)matrix[n][m];
      }
    }
    real maxLen = std::max(m, n);
    deletions_ += deletions / maxLen;
    insertions_ += insertions / maxLen;
    substitutions_ += substitutions / maxLen;

    if (distance != 0) {
      seqClassficationError_ += 1;
    }

    return distance / maxLen;
  }

171 172
  real editDistance(
      real* output, int numTimes, int numClasses, int* labels, int labelsLen) {
Z
zhangjinchao01 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    numTimes_ = numTimes;
    numClasses_ = numClasses;
    blank_ = numClasses_ - 1;
    outActivations_ = Matrix::create(output, numTimes, numClasses);
    std::vector<int> recogStr, gtStr;
    recogStr = bestLabelSeq();
    for (int i = 0; i < labelsLen; ++i) {
      gtStr.push_back(labels[i]);
    }

    return stringAlignment(gtStr, recogStr);
  }

public:
  CTCErrorEvaluator()
      : numTimes_(0),
        numClasses_(0),
        numSequences_(0),
        blank_(0),
        deletions_(0),
        insertions_(0),
        substitutions_(0),
        seqClassficationError_(0) {}

  virtual real evalImp(std::vector<Argument>& arguments) {
    CHECK_EQ(arguments.size(), (size_t)2);
    Argument output, label;
200 201 202
    output.resizeAndCopyFrom(arguments[0], false, HPPL_STREAM_DEFAULT);
    label.resizeAndCopyFrom(arguments[1], false, HPPL_STREAM_DEFAULT);
    hl_stream_synchronize(HPPL_STREAM_DEFAULT);
Z
zhangjinchao01 已提交
203 204 205 206 207 208 209 210 211 212
    CHECK(label.sequenceStartPositions);
    CHECK(label.ids);
    size_t numSequences = label.sequenceStartPositions->getSize() - 1;
    const int* labelStarts = label.sequenceStartPositions->getData(false);
    const int* outputStarts = output.sequenceStartPositions->getData(false);
    real totalErr = 0;
    for (size_t i = 0; i < numSequences; ++i) {
      real err = 0;
      err = editDistance(
          output.value->getData() + output.value->getWidth() * outputStarts[i],
213 214
          outputStarts[i + 1] - outputStarts[i],
          output.value->getWidth(),
Z
zhangjinchao01 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
          label.ids->getData() + labelStarts[i],
          labelStarts[i + 1] - labelStarts[i]);

      totalErr += err;
    }

    return totalErr;
  }

  virtual void eval(const NeuralNetwork& nn) {
    Evaluator::eval(nn);
    std::vector<Argument> arguments;
    arguments.reserve(config_.input_layers_size());
    for (const std::string& name : config_.input_layers()) {
      arguments.push_back(nn.getLayer(name)->getOutput());
    }
231 232 233
  }

  virtual void updateSamplesNum(const std::vector<Argument>& arguments) {
Z
zhangjinchao01 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246
    numSequences_ += arguments[1].getNumSequences();
  }

  virtual void start() {
    Evaluator::start();
    numSequences_ = 0;
    blank_ = 0;
    deletions_ = 0;
    insertions_ = 0;
    substitutions_ = 0;
    seqClassficationError_ = 0;
  }

Y
Yu Yang 已提交
247
  virtual void printStats(std::ostream& os) const {
Z
zhangjinchao01 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    os << config_.name() << "="
       << (numSequences_ ? totalScore_ / numSequences_ : 0);
    os << "  deletions error"
       << "=" << (numSequences_ ? deletions_ / numSequences_ : 0);
    os << "  insertions error"
       << "=" << (numSequences_ ? insertions_ / numSequences_ : 0);
    os << "  substitutions error"
       << "=" << (numSequences_ ? substitutions_ / numSequences_ : 0);
    os << "  sequences error"
       << "=" << (real)seqClassficationError_ / numSequences_;
  }

  virtual void distributeEval(ParameterClient2* client) {
    double buf[6] = {totalScore_,
                     (double)deletions_,
                     (double)insertions_,
                     (double)substitutions_,
                     (double)seqClassficationError_,
                     (double)numSequences_};
    client->reduce(buf, buf, 6, FLAGS_trainer_id, 0);
    totalScore_ = buf[0];
    deletions_ = (real)buf[1];
    insertions_ = (real)buf[2];
    substitutions_ = (real)buf[3];
    seqClassficationError_ = (int)buf[4];
    numSequences_ = (int)buf[5];
  }
};

REGISTER_EVALUATOR(ctc_edit_distance, CTCErrorEvaluator);

}  // namespace paddle