functional_tensor.py 23.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

17 18 19
import math
import numbers

20
import paddle
21 22 23 24 25
import paddle.nn.functional as F

import sys
import collections

26 27
__all__ = []

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

def _assert_image_tensor(img, data_format):
    if not isinstance(
            img, paddle.Tensor) or img.ndim != 3 or not data_format.lower() in (
                'chw', 'hwc'):
        raise RuntimeError(
            'not support [type={}, ndim={}, data_format={}] paddle image'.
            format(type(img), img.ndim, data_format))


def _get_image_h_axis(data_format):
    if data_format.lower() == 'chw':
        return -2
    elif data_format.lower() == 'hwc':
        return -3


def _get_image_w_axis(data_format):
    if data_format.lower() == 'chw':
        return -1
    elif data_format.lower() == 'hwc':
        return -2


def _get_image_c_axis(data_format):
    if data_format.lower() == 'chw':
        return -3
    elif data_format.lower() == 'hwc':
        return -1


def _get_image_n_axis(data_format):
    if len(data_format) == 3:
        return None
    elif len(data_format) == 4:
        return 0


def _is_channel_last(data_format):
    return _get_image_c_axis(data_format) == -1


def _is_channel_first(data_format):
    return _get_image_c_axis(data_format) == -3


def _get_image_num_batches(img, data_format):
    if _get_image_n_axis(data_format):
        return img.shape[_get_image_n_axis(data_format)]
    return None


def _get_image_num_channels(img, data_format):
    return img.shape[_get_image_c_axis(data_format)]


def _get_image_size(img, data_format):
    return img.shape[_get_image_w_axis(data_format)], img.shape[
        _get_image_h_axis(data_format)]
87 88


J
JYChen 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
def _rgb_to_hsv(img):
    """Convert a image Tensor from RGB to HSV. This implementation is based on Pillow (
            https://github.com/python-pillow/Pillow/blob/main/src/libImaging/Convert.c)
    """
    maxc = img.max(axis=-3)
    minc = img.min(axis=-3)

    is_equal = paddle.equal(maxc, minc)
    one_divisor = paddle.ones_like(maxc)
    c_delta = maxc - minc
    # s is 0 when maxc == minc, set the divisor to 1 to avoid zero divide.
    s = c_delta / paddle.where(is_equal, one_divisor, maxc)

    r, g, b = img.unbind(axis=-3)
    c_delta_divisor = paddle.where(is_equal, one_divisor, c_delta)
    # when maxc == minc, there is r == g == b, set the divisor to 1 to avoid zero divide.
    rc = (maxc - r) / c_delta_divisor
    gc = (maxc - g) / c_delta_divisor
    bc = (maxc - b) / c_delta_divisor

    hr = (maxc == r).astype(maxc.dtype) * (bc - gc)
    hg = ((maxc == g) & (maxc != r)).astype(maxc.dtype) * (rc - bc + 2.0)
    hb = ((maxc != r) & (maxc != g)).astype(maxc.dtype) * (gc - rc + 4.0)
    h = (hr + hg + hb) / 6.0 + 1.0
    h = h - h.trunc()
    return paddle.stack([h, s, maxc], axis=-3)


def _hsv_to_rgb(img):
    """Convert a image Tensor from HSV to RGB.
    """
    h, s, v = img.unbind(axis=-3)
    f = h * 6.0
    i = paddle.floor(f)
    f = f - i
    i = i.astype(paddle.int32) % 6

    p = paddle.clip(v * (1.0 - s), 0.0, 1.0)
    q = paddle.clip(v * (1.0 - s * f), 0.0, 1.0)
    t = paddle.clip(v * (1.0 - s * (1.0 - f)), 0.0, 1.0)

    mask = paddle.equal(
        i.unsqueeze(axis=-3),
        paddle.arange(
            6, dtype=i.dtype).reshape((-1, 1, 1))).astype(img.dtype)
    matrix = paddle.stack(
        [
            paddle.stack(
                [v, q, p, p, t, v], axis=-3), paddle.stack(
                    [t, v, v, q, p, p], axis=-3), paddle.stack(
                        [p, p, t, v, v, q], axis=-3)
        ],
        axis=-4)
    return paddle.einsum("...ijk, ...xijk -> ...xjk", mask, matrix)


def _blend_images(img1, img2, ratio):
    max_value = 1.0 if paddle.is_floating_point(img1) else 255.0
    return paddle.lerp(img2, img1, float(ratio)).clip(
        0, max_value).astype(img1.dtype)


151
def normalize(img, mean, std, data_format='CHW'):
152
    """Normalizes a tensor image given mean and standard deviation.
153 154 155 156 157 158 159 160 161 162 163 164

    Args:
        img (paddle.Tensor): input data to be normalized.
        mean (list|tuple): Sequence of means for each channel.
        std (list|tuple): Sequence of standard deviations for each channel.
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.

    Returns:
        Tensor: Normalized mage.

    """
165 166 167 168 169 170 171 172 173
    _assert_image_tensor(img, data_format)

    mean = paddle.to_tensor(mean, place=img.place)
    std = paddle.to_tensor(std, place=img.place)

    if _is_channel_first(data_format):
        mean = mean.reshape([-1, 1, 1])
        std = std.reshape([-1, 1, 1])

174
    return (img - mean) / std
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418


def to_grayscale(img, num_output_channels=1, data_format='CHW'):
    """Converts image to grayscale version of image.

    Args:
        img (paddel.Tensor): Image to be converted to grayscale.
        num_output_channels (int, optionl[1, 3]):
            if num_output_channels = 1 : returned image is single channel
            if num_output_channels = 3 : returned image is 3 channel 
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.

    Returns:
        paddle.Tensor: Grayscale version of the image.
    """
    _assert_image_tensor(img, data_format)

    if num_output_channels not in (1, 3):
        raise ValueError('num_output_channels should be either 1 or 3')

    rgb_weights = paddle.to_tensor(
        [0.2989, 0.5870, 0.1140], place=img.place).astype(img.dtype)

    if _is_channel_first(data_format):
        rgb_weights = rgb_weights.reshape((-1, 1, 1))

    _c_index = _get_image_c_axis(data_format)

    img = (img * rgb_weights).sum(axis=_c_index, keepdim=True)
    _shape = img.shape
    _shape[_c_index] = num_output_channels

    return img.expand(_shape)


def _affine_grid(theta, w, h, ow, oh):
    d = 0.5
    base_grid = paddle.ones((1, oh, ow, 3), dtype=theta.dtype)

    x_grid = paddle.linspace(-ow * 0.5 + d, ow * 0.5 + d - 1, ow)
    base_grid[..., 0] = x_grid
    y_grid = paddle.linspace(-oh * 0.5 + d, oh * 0.5 + d - 1, oh).unsqueeze_(-1)
    base_grid[..., 1] = y_grid

    scaled_theta = theta.transpose(
        (0, 2, 1)) / paddle.to_tensor([0.5 * w, 0.5 * h])
    output_grid = base_grid.reshape((1, oh * ow, 3)).bmm(scaled_theta)

    return output_grid.reshape((1, oh, ow, 2))


def _grid_transform(img, grid, mode, fill):
    if img.shape[0] > 1:
        grid = grid.expand(img.shape[0], grid.shape[1], grid.shape[2],
                           grid.shape[3])

    if fill is not None:
        dummy = paddle.ones(
            (img.shape[0], 1, img.shape[2], img.shape[3]), dtype=img.dtype)
        img = paddle.concat((img, dummy), axis=1)

    img = F.grid_sample(
        img, grid, mode=mode, padding_mode="zeros", align_corners=False)

    # Fill with required color
    if fill is not None:
        mask = img[:, -1:, :, :]  # n 1 h w
        img = img[:, :-1, :, :]  # n c h w
        mask = mask.expand_as(img)
        len_fill = len(fill) if isinstance(fill, (tuple, list)) else 1
        fill_img = paddle.to_tensor(fill).reshape(
            (1, len_fill, 1, 1)).expand_as(img)

        if mode == 'nearest':
            mask = paddle.cast(mask < 0.5, img.dtype)
            img = img * (1. - mask) + mask * fill_img
        else:  # 'bilinear'
            img = img * mask + (1.0 - mask) * fill_img

    return img


def rotate(img,
           angle,
           interpolation='nearest',
           expand=False,
           center=None,
           fill=None,
           data_format='CHW'):
    """Rotates the image by angle.

    Args:
        img (paddle.Tensor): Image to be rotated.
        angle (float or int): In degrees degrees counter clockwise order.
        interpolation (str, optional): Interpolation method. If omitted, or if the 
            image has only one channel, it is set NEAREST . when use pil backend, 
            support method are as following: 
            - "nearest" 
            - "bilinear"
            - "bicubic"
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
        fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
            If int, it is used for all channels respectively.

    Returns:
        paddle.Tensor: Rotated image.

    """

    angle = -angle % 360
    img = img.unsqueeze(0)

    # n, c, h, w = img.shape
    w, h = _get_image_size(img, data_format=data_format)

    img = img if data_format.lower() == 'chw' else img.transpose((0, 3, 1, 2))

    post_trans = [0, 0]

    if center is None:
        rotn_center = [0, 0]
    else:
        rotn_center = [(p - s * 0.5) for p, s in zip(center, [w, h])]

    angle = math.radians(angle)
    matrix = [
        math.cos(angle),
        math.sin(angle),
        0.0,
        -math.sin(angle),
        math.cos(angle),
        0.0,
    ]

    matrix[2] += matrix[0] * (-rotn_center[0] - post_trans[0]) + matrix[1] * (
        -rotn_center[1] - post_trans[1])
    matrix[5] += matrix[3] * (-rotn_center[0] - post_trans[0]) + matrix[4] * (
        -rotn_center[1] - post_trans[1])

    matrix[2] += rotn_center[0]
    matrix[5] += rotn_center[1]

    matrix = paddle.to_tensor(matrix, place=img.place)
    matrix = matrix.reshape((1, 2, 3))

    if expand:
        # calculate output size
        corners = paddle.to_tensor(
            [[-0.5 * w, -0.5 * h, 1.0], [-0.5 * w, 0.5 * h, 1.0],
             [0.5 * w, 0.5 * h, 1.0], [0.5 * w, -0.5 * h, 1.0]],
            place=matrix.place).astype(matrix.dtype)

        _pos = corners.reshape(
            (1, -1, 3)).bmm(matrix.transpose((0, 2, 1))).reshape((1, -1, 2))
        _min = _pos.min(axis=-2).floor()
        _max = _pos.max(axis=-2).ceil()

        npos = _max - _min
        nw = npos[0][0]
        nh = npos[0][1]

        ow, oh = int(nw.numpy()[0]), int(nh.numpy()[0])

    else:
        ow, oh = w, h

    grid = _affine_grid(matrix, w, h, ow, oh)

    out = _grid_transform(img, grid, mode=interpolation, fill=fill)

    out = out if data_format.lower() == 'chw' else out.transpose((0, 2, 3, 1))

    return out.squeeze(0)


def vflip(img, data_format='CHW'):
    """Vertically flips the given paddle tensor.

    Args:
        img (paddle.Tensor): Image to be flipped.
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.

    Returns:
        paddle.Tensor:  Vertically flipped image.

    """
    _assert_image_tensor(img, data_format)

    h_axis = _get_image_h_axis(data_format)

    return img.flip(axis=[h_axis])


def hflip(img, data_format='CHW'):
    """Horizontally flips the given paddle.Tensor Image.

    Args:
        img (paddle.Tensor): Image to be flipped.
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.

    Returns:
        paddle.Tensor:  Horizontall flipped image.

    """
    _assert_image_tensor(img, data_format)

    w_axis = _get_image_w_axis(data_format)

    return img.flip(axis=[w_axis])


def crop(img, top, left, height, width, data_format='CHW'):
    """Crops the given paddle.Tensor Image.

    Args:
        img (paddle.Tensor): Image to be cropped. (0,0) denotes the top left 
            corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
    Returns:
        paddle.Tensor: Cropped image.

    """
    _assert_image_tensor(img, data_format)

    if _is_channel_first(data_format):
        return img[:, top:top + height, left:left + width]
    else:
        return img[top:top + height, left:left + width, :]


419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
def erase(img, i, j, h, w, v, inplace=False):
    """Erase the pixels of selected area in input Tensor image with given value.

       Args:
            img (paddle.Tensor): input Tensor image.
            i (int): y coordinate of the top-left point of erased region.
            j (int): x coordinate of the top-left point of erased region.
            h (int): Height of the erased region.
            w (int): Width of the erased region.
            v (paddle.Tensor): value used to replace the pixels in erased region.
            inplace (bool, optional): Whether this transform is inplace. Default: False.

        Returns:
            paddle.Tensor: Erased image.
        
    """
    _assert_image_tensor(img, 'CHW')
    if not inplace:
        img = img.clone()

    img[..., i:i + h, j:j + w] = v
    return img


443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
def center_crop(img, output_size, data_format='CHW'):
    """Crops the given paddle.Tensor Image and resize it to desired size.

        Args:
            img (paddle.Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
            output_size (sequence or int): (height, width) of the crop box. If int,
                it is used for both directions   
            data_format (str, optional): Data format of img, should be 'HWC' or 
                'CHW'. Default: 'CHW'.     
        Returns:
            paddle.Tensor: Cropped image.

        """
    _assert_image_tensor(img, data_format)

    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))

    image_width, image_height = _get_image_size(img, data_format)
    crop_height, crop_width = output_size
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))
    return crop(
        img,
        crop_top,
        crop_left,
        crop_height,
        crop_width,
        data_format=data_format)


def pad(img, padding, fill=0, padding_mode='constant', data_format='CHW'):
    """
    Pads the given paddle.Tensor on all sides with specified padding mode and fill value.

    Args:
        img (paddle.Tensor): Image to be padded.
        padding (int|list|tuple): Padding on each border. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
        fill (float, optional): Pixel fill value for constant fill. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant. Default: 0. 
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]

    Returns:
        paddle.Tensor: Padded image.

    """
    _assert_image_tensor(img, data_format)

    if not isinstance(padding, (numbers.Number, list, tuple)):
        raise TypeError('Got inappropriate padding arg')
    if not isinstance(fill, (numbers.Number, str, list, tuple)):
        raise TypeError('Got inappropriate fill arg')
    if not isinstance(padding_mode, str):
        raise TypeError('Got inappropriate padding_mode arg')

    if isinstance(padding, (list, tuple)) and len(padding) not in [2, 4]:
        raise ValueError(
            "Padding must be an int or a 2, or 4 element tuple, not a " +
            "{} element tuple".format(len(padding)))

    assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \
        'Padding mode should be either constant, edge, reflect or symmetric'

    if isinstance(padding, int):
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif len(padding) == 2:
        pad_left = pad_right = padding[0]
        pad_top = pad_bottom = padding[1]
    else:
        pad_left = padding[0]
        pad_top = padding[1]
        pad_right = padding[2]
        pad_bottom = padding[3]

    padding = [pad_left, pad_right, pad_top, pad_bottom]

    if padding_mode == 'edge':
        padding_mode = 'replicate'
    elif padding_mode == 'symmetric':
D
duanboqiang 已提交
541
        raise ValueError('Do not support symmetric mode')
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

    img = img.unsqueeze(0)
    #  'constant', 'reflect', 'replicate', 'circular'
    img = F.pad(img,
                pad=padding,
                mode=padding_mode,
                value=float(fill),
                data_format='N' + data_format)

    return img.squeeze(0)


def resize(img, size, interpolation='bilinear', data_format='CHW'):
    """
    Resizes the image to given size

    Args:
        input (paddle.Tensor): Image to be resized.
        size (int|list|tuple): Target size of input data, with (height, width) shape.
        interpolation (int|str, optional): Interpolation method. when use paddle backend, 
            support method are as following: 
            - "nearest"  
            - "bilinear"
            - "bicubic"
            - "trilinear"
            - "area"
            - "linear"
        data_format (str, optional): paddle.Tensor format
            - 'CHW'
            - 'HWC'
    Returns:
        paddle.Tensor: Resized image.

    """
    _assert_image_tensor(img, data_format)

    if not (isinstance(size, int) or
            (isinstance(size, (tuple, list)) and len(size) == 2)):
        raise TypeError('Got inappropriate size arg: {}'.format(size))

    if isinstance(size, int):
        w, h = _get_image_size(img, data_format)
        if (w <= h and w == size) or (h <= w and h == size):
            return img
        if w < h:
            ow = size
            oh = int(size * h / w)
        else:
            oh = size
            ow = int(size * w / h)
    else:
        oh, ow = size

    img = img.unsqueeze(0)
    img = F.interpolate(
        img,
        size=(oh, ow),
        mode=interpolation.lower(),
        data_format='N' + data_format.upper())

    return img.squeeze(0)
J
JYChen 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726


def adjust_brightness(img, brightness_factor):
    """Adjusts brightness of an Image.

    Args:
        img (paddle.Tensor): Image to be adjusted.
        brightness_factor (float): How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
        paddle.Tensor: Brightness adjusted image.

    """
    _assert_image_tensor(img, 'CHW')
    assert brightness_factor >= 0, "brightness_factor should be non-negative."
    assert _get_image_num_channels(
        img, 'CHW') in [1, 3], "channels of input should be either 1 or 3."

    extreme_target = paddle.zeros_like(img, img.dtype)
    return _blend_images(img, extreme_target, brightness_factor)


def adjust_contrast(img, contrast_factor):
    """Adjusts contrast of an image.

    Args:
        img (paddle.Tensor): Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        paddle.Tensor: Contrast adjusted image.

    """
    _assert_image_tensor(img, 'chw')
    assert contrast_factor >= 0, "contrast_factor should be non-negative."

    channels = _get_image_num_channels(img, 'CHW')
    dtype = img.dtype if paddle.is_floating_point(img) else paddle.float32
    if channels == 1:
        extreme_target = paddle.mean(
            img.astype(dtype), axis=(-3, -2, -1), keepdim=True)
    elif channels == 3:
        extreme_target = paddle.mean(
            to_grayscale(img).astype(dtype), axis=(-3, -2, -1), keepdim=True)
    else:
        raise ValueError("channels of input should be either 1 or 3.")

    return _blend_images(img, extreme_target, contrast_factor)


def adjust_saturation(img, saturation_factor):
    """Adjusts color saturation of an image.

    Args:
        img (paddle.Tensor): Image to be adjusted.
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
        paddle.Tensor: Saturation adjusted image.

    """
    _assert_image_tensor(img, 'CHW')
    assert saturation_factor >= 0, "saturation_factor should be non-negative."
    channels = _get_image_num_channels(img, 'CHW')
    if channels == 1:
        return img
    elif channels == 3:
        extreme_target = to_grayscale(img)
    else:
        raise ValueError("channels of input should be either 1 or 3.")

    return _blend_images(img, extreme_target, saturation_factor)


def adjust_hue(img, hue_factor):
    """Adjusts hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

    Args:
        img (paddle.Tensor): Image to be adjusted.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
        paddle.Tensor: Hue adjusted image.

    """
    _assert_image_tensor(img, 'CHW')
    assert hue_factor >= -0.5 and hue_factor <= 0.5, "hue_factor should be in range [-0.5, 0.5]"
    channels = _get_image_num_channels(img, 'CHW')
    if channels == 1:
        return img
    elif channels == 3:
        dtype = img.dtype
        if dtype == paddle.uint8:
            img = img.astype(paddle.float32) / 255.0

        img_hsv = _rgb_to_hsv(img)
        h, s, v = img_hsv.unbind(axis=-3)
        h = (h + hue_factor)
        h = h - h.floor()
        img_adjusted = _hsv_to_rgb(paddle.stack([h, s, v], axis=-3))

        if dtype == paddle.uint8:
            img_adjusted = (img_adjusted * 255.0).astype(dtype)
    else:
        raise ValueError("channels of input should be either 1 or 3.")

    return img_adjusted