test_fill_api.cc 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

18
#include "paddle/pten/api/include/creation.h"
19

20
#include "paddle/pten/api/lib/utils/allocator.h"
21 22 23
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/kernel_registry.h"

24 25 26
namespace paddle {
namespace tests {

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
namespace framework = paddle::framework;
using DDim = paddle::framework::DDim;

// TODO(chenweihang): Remove this test after the API is used in the dygraph
TEST(API, full_like) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 2}),
                            pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x->mutable_data<float>();
  dense_x_data[0] = 0;

  float val = 1.0;

  paddle::experimental::Tensor x(dense_x);

  // 2. test API
  auto out = paddle::experimental::full_like(x, val, pten::DataType::FLOAT32);

  // 3. check result
51 52
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.dims()[0], 3);
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
  ASSERT_EQ(out.numel(), 6);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::FLOAT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto* actual_result = dense_out->data<float>();
  for (auto i = 0; i < 6; i++) {
    ASSERT_NEAR(actual_result[i], val, 1e-6f);
  }
}

TEST(API, zeros_like) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 2}),
                            pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x->mutable_data<float>();
  dense_x_data[0] = 1;

  paddle::experimental::Tensor x(dense_x);

  // 2. test API
81
  auto out = paddle::experimental::zeros_like(x, pten::DataType::INT32);
82 83

  // 3. check result
84 85
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.dims()[0], 3);
86 87
  ASSERT_EQ(out.numel(), 6);
  ASSERT_EQ(out.is_cpu(), true);
88
  ASSERT_EQ(out.type(), pten::DataType::INT32);
89 90 91 92
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
93
  auto* actual_result = dense_out->data<int32_t>();
94
  for (auto i = 0; i < 6; i++) {
95
    ASSERT_EQ(actual_result[i], 0);
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  }
}

TEST(API, ones_like) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::INT32,
                            framework::make_ddim({3, 2}),
                            pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x->mutable_data<int32_t>();
  dense_x_data[0] = 0;

  paddle::experimental::Tensor x(dense_x);

  // 2. test API
  auto out = paddle::experimental::ones_like(x, pten::DataType::INT32);

  // 3. check result
117 118
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.dims()[0], 3);
119 120 121 122 123 124 125 126 127 128 129 130
  ASSERT_EQ(out.numel(), 6);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::INT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto* actual_result = dense_out->data<int32_t>();
  for (auto i = 0; i < 6; i++) {
    ASSERT_EQ(actual_result[i], 1);
  }
}
131 132 133 134 135 136 137 138 139 140 141 142

TEST(API, full) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

  float val = 1.0;

  // 2. test API
  auto out = paddle::experimental::full({3, 2}, val, pten::DataType::FLOAT32);

  // 3. check result
143
  ASSERT_EQ(out.shape().size(), 2UL);
144 145 146 147 148 149 150 151 152 153 154 155 156
  ASSERT_EQ(out.shape()[0], 3);
  ASSERT_EQ(out.numel(), 6);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::FLOAT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto* actual_result = dense_out->data<float>();
  for (auto i = 0; i < 6; i++) {
    ASSERT_NEAR(actual_result[i], val, 1e-6f);
  }
}
157 158 159

}  // namespace tests
}  // namespace paddle