analysis_predictor.cc 42.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

Y
Yan Chunwei 已提交
15
#include "paddle/fluid/inference/api/analysis_predictor.h"
16 17
#include <glog/logging.h>
#include <algorithm>
N
nhzlx 已提交
18
#include <fstream>
19
#include <memory>
20
#include <set>
21
#include <string>
22
#include <utility>
23
#include <vector>
24
#include "paddle/fluid/framework/feed_fetch_method.h"
25
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yan Chunwei 已提交
26
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
27
#include "paddle/fluid/framework/ir/pass.h"
28
#include "paddle/fluid/framework/naive_executor.h"
29
#include "paddle/fluid/framework/scope.h"
Y
Yan Chunwei 已提交
30
#include "paddle/fluid/framework/var_type_traits.h"
31
#include "paddle/fluid/framework/version.h"
32
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
33
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
34
#include "paddle/fluid/inference/api/helper.h"
L
luotao1 已提交
35
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
36
#include "paddle/fluid/inference/utils/singleton.h"
37
#include "paddle/fluid/memory/memcpy.h"
38
#include "paddle/fluid/platform/cpu_helper.h"
39
#include "paddle/fluid/platform/device_context.h"
40
#include "paddle/fluid/platform/gpu_info.h"
41
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
42 43
#include "paddle/fluid/platform/profiler.h"

44 45 46 47
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

48 49 50 51
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/inference/api/mkldnn_quantizer.h"
#endif

Y
Yan Chunwei 已提交
52 53
#if PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
54
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
Y
Yan Chunwei 已提交
55 56
#endif

57 58
namespace paddle {

N
nhzlx 已提交
59
using inference::Singleton;
N
nhzlx 已提交
60
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
61
using inference::tensorrt::TRTInt8Calibrator;
N
nhzlx 已提交
62 63
using inference::tensorrt::TRTCalibratorEngine;
using inference::tensorrt::TRTCalibratorEngineManager;
N
nhzlx 已提交
64
#endif
65

66 67 68 69
namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
70 71
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
72 73 74 75 76 77
    return true;
  }
  return false;
}
}  // namespace

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
bool PaddleTensorToLoDTensor(const PaddleTensor &pt, framework::LoDTensor *t,
                             const platform::Place &place) {
  framework::DDim ddim = framework::make_ddim(pt.shape);
  void *input_ptr;
  if (pt.dtype == PaddleDType::INT64) {
    input_ptr = t->mutable_data<int64_t>(ddim, place);
  } else if (pt.dtype == PaddleDType::FLOAT32) {
    input_ptr = t->mutable_data<float>(ddim, place);
  } else if (pt.dtype == PaddleDType::INT32) {
    input_ptr = t->mutable_data<int32_t>(ddim, place);
  } else {
    LOG(ERROR) << "unsupported feed type " << pt.dtype;
    return false;
  }

  PADDLE_ENFORCE_NOT_NULL(
      input_ptr,
      paddle::platform::errors::Fatal(
          "Cannot convert to LoDTensor because LoDTensor creation failed."));
  PADDLE_ENFORCE_NOT_NULL(
      pt.data.data(),
      paddle::platform::errors::InvalidArgument(
          "The data contained in the input PaddleTensor is illegal."));

  if (platform::is_cpu_place(place)) {
    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
    std::memcpy(static_cast<void *>(input_ptr), pt.data.data(),
                pt.data.length());
  } else {
#ifdef PADDLE_WITH_CUDA
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto *dev_ctx =
        static_cast<const platform::CUDADeviceContext *>(pool.Get(place));
111
    auto dst_gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place);
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    memory::Copy(dst_gpu_place, static_cast<void *>(input_ptr),
                 platform::CPUPlace(), pt.data.data(), pt.data.length(),
                 dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Not compile with CUDA, should not reach here."));
#endif
  }
  // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
  framework::LoD lod;
  for (auto &level : pt.lod) {
    lod.emplace_back(level);
  }
  t->set_lod(lod);
  return true;
}

Y
Yan Chunwei 已提交
129
bool AnalysisPredictor::Init(
130 131
    const std::shared_ptr<framework::Scope> &parent_scope,
    const std::shared_ptr<framework::ProgramDesc> &program) {
M
minqiyang 已提交
132
  VLOG(3) << "Predictor::init()";
133 134
  if (config_.with_profile_) {
    LOG(WARNING) << "Profiler is activated, which might affect the performance";
135 136
    auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
                                             : platform::ProfilerState::kCPU;
T
tensor-tang 已提交
137
    platform::EnableProfiler(tracking_device);
138 139 140
  } else {
    LOG(INFO) << "Profiler is deactivated, and no profiling report will be "
                 "generated.";
T
tensor-tang 已提交
141 142
  }

143
  // no matter with or without MKLDNN
L
luotao1 已提交
144
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
145

146 147 148 149 150 151 152 153 154 155 156 157 158
  if (!PrepareScope(parent_scope)) {
    return false;
  }
  if (!CreateExecutor()) {
    return false;
  }
  if (!PrepareProgram(program)) {
    return false;
  }

  // Prepare executor, create local variables.
  if (!PrepareExecutor()) {
    return true;
Y
Yan Chunwei 已提交
159
  }
160 161 162 163 164 165 166 167 168

  // Get the feed_target_names and fetch_target_names
  PrepareFeedFetch();

  return true;
}

bool AnalysisPredictor::PrepareScope(
    const std::shared_ptr<framework::Scope> &parent_scope) {
Y
Yan Chunwei 已提交
169
  if (parent_scope) {
170 171
    PADDLE_ENFORCE_NOT_NULL(
        parent_scope,
172 173
        platform::errors::PreconditionNotMet(
            "Both program and parent_scope should be set in Clone mode."));
Y
Yan Chunwei 已提交
174
    scope_ = parent_scope;
175
    status_is_cloned_ = true;
Y
Yan Chunwei 已提交
176
  } else {
177
    paddle::framework::InitDevices(false);
178 179 180 181
    scope_.reset(new paddle::framework::Scope(), [&](framework::Scope *scope) {
      delete scope;
      memory::Release(place_);
    });
182
    status_is_cloned_ = false;
Y
Yan Chunwei 已提交
183
  }
184 185 186 187 188
  sub_scope_ = &scope_->NewScope();
  return true;
}
bool AnalysisPredictor::PrepareProgram(
    const std::shared_ptr<framework::ProgramDesc> &program) {
189 190
  if (!program) {
    if (!LoadProgramDesc()) return false;
191 192 193 194 195 196 197 198 199
    // If not cloned, the parameters should be loaded.
    // If config_.ir_optim() is True, parameters is loaded in
    // OptimizeInferenceProgram(), but other persistable variables
    // (like RAW type var) are not created in scope.
    // If config_.ir_optim() is False, parameters is loaded in LoadParameters(),
    // still need to create other persistable variables.
    // So in both case, create persistable variables at first.
    executor_->CreateVariables(*inference_program_, 0, true, sub_scope_);

200 201 202 203
    // if enable_ir_optim_ is false,
    // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will
    // not be executed.
    OptimizeInferenceProgram();
Y
Yan Chunwei 已提交
204
  } else {
205 206
    // If the program is passed from external, no need to optimize it, this
    // logic is used in the clone scenario.
207 208
    inference_program_ = program;
  }
M
Michal Gallus 已提交
209

210 211 212 213 214
  executor_->CreateVariables(*inference_program_, 0, false, sub_scope_);

  return true;
}
bool AnalysisPredictor::CreateExecutor() {
215
  if (config_.use_gpu()) {
216
    status_use_gpu_ = true;
217 218 219 220 221 222 223 224 225 226
    place_ = paddle::platform::CUDAPlace(config_.gpu_device_id());
#ifdef PADDLE_WITH_CUDA
    if (config_.thread_local_stream_enabled()) {
      auto *ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place_));
      VLOG(3) << "The prediction process will be completed using a separate "
                 "normal-priority stream on each thread.";
      ctx->ResetThreadContext(platform::stream::Priority::kNormal);
    }
#endif
227 228 229 230 231 232 233 234
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  executor_.reset(new paddle::framework::NaiveExecutor(place_));
  return true;
}
bool AnalysisPredictor::PrepareExecutor() {
  executor_->Prepare(sub_scope_, *inference_program_, 0,
235
                     config_.use_feed_fetch_ops_);
236

237 238 239
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::PreconditionNotMet(
                              "The sub_scope should not be nullptr."));
Y
Yan Chunwei 已提交
240

241 242 243
  return true;
}

244 245
void AnalysisPredictor::MkldnnPreSet(const std::vector<PaddleTensor> &inputs) {
#ifdef PADDLE_WITH_MKLDNN
W
Wilber 已提交
246 247 248 249 250 251 252 253 254 255 256 257
  std::vector<std::vector<int>> inputs_shape;
  for (size_t i = 0; i < inputs.size(); ++i) {
    inputs_shape.emplace_back(inputs[i].shape);
  }
  MkldnnPreSet(inputs_shape);
#endif
}

void AnalysisPredictor::MkldnnPreSet(
    const std::vector<std::vector<int>> &inputs_shape) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(2) << "AnalysisPredictor::ZeroCopyRun get_cur_mkldnn_session_id="
258
          << platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id();
259 260 261
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
    VLOG(2) << "In mkldnn cache clear mode.";
262 263 264 265
    platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::
            kMKLDNNSessionID_CacheClearing);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(
266 267 268
        config_.mkldnn_cache_capacity_);
    // Set current_input_shape for caching dynamic shape.
    std::stringstream ss;
W
Wilber 已提交
269 270 271
    for (size_t i = 0; i < inputs_shape.size(); ++i) {
      for (size_t j = 0; j < inputs_shape[i].size(); ++j) {
        ss << inputs_shape[i][j] << "-";
272 273 274
      }
    }
    VLOG(2) << "Set input shape=" << ss.str();
275
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str(ss.str());
276 277 278 279 280 281 282 283
  }
#endif
}

void AnalysisPredictor::MkldnnPostReset() {
#ifdef PADDLE_WITH_MKLDNN
  // In cache clearing mode.
  if (config_.mkldnn_cache_capacity_ > 0) {
284 285 286 287 288 289 290 291
    if (VLOG_IS_ON(2)) {
      auto shape_blob_size = static_cast<platform::MKLDNNDeviceContext *>(
                                 (&platform::DeviceContextPool::Instance())
                                     ->Get(platform::CPUPlace()))
                                 ->GetShapeBlobSize();
      CHECK_LE(shape_blob_size,
               static_cast<size_t>(config_.mkldnn_cache_capacity_));
    }
292 293 294 295
    paddle::platform::MKLDNNDeviceContext::tls().set_cur_mkldnn_session_id(
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_cache_capacity(0);
    platform::MKLDNNDeviceContext::tls().set_cur_input_shape_str("");
296 297 298 299
  }
#endif
}

300 301 302
bool AnalysisPredictor::Run(const std::vector<PaddleTensor> &inputs,
                            std::vector<PaddleTensor> *output_data,
                            int batch_size) {
303
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
304 305 306
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPreSet(inputs);
#endif
M
minqiyang 已提交
307
  VLOG(3) << "Predictor::predict";
308 309 310 311
  inference::Timer timer;
  timer.tic();
  // set feed variable
  framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get();
312 313
  PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::PreconditionNotMet(
                                     "The scope should not be nullptr."));
314 315
  if (!SetFeed(inputs, scope)) {
    LOG(ERROR) << "fail to set feed";
Y
Yan Chunwei 已提交
316
    return false;
317
  }
M
Michal Gallus 已提交
318

319 320 321
  // Run the inference program
  // if share variables, we need not create variables
  executor_->Run();
322

323 324 325 326
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
    LOG(ERROR) << "fail to get fetches";
    return false;
T
tensor-tang 已提交
327
  }
Y
Yan Chunwei 已提交
328

M
minqiyang 已提交
329
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
Y
Yan Chunwei 已提交
330

Y
Yan Chunwei 已提交
331 332 333 334 335
  // All the containers in the scope will be hold in inference, but the
  // operators assume that the container will be reset after each batch.
  // Here is a bugfix, collect all the container variables, and reset then to a
  // bool; the next time, the operator will call MutableData and construct a new
  // container again, so that the container will be empty for each batch.
336 337 338
  if (sub_scope_) {
    tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_);
  }
Y
Yan Chunwei 已提交
339
  tensor_array_batch_cleaner_.ResetNoTensorVars();
340 341 342 343

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
344 345
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
T
Tao Luo 已提交
346
#endif
347
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
348 349 350 351
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
352
#endif
353 354
  return true;
}
355

356 357
bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
                                framework::Scope *scope) {
M
minqiyang 已提交
358
  VLOG(3) << "Predictor::set_feed";
359 360 361 362 363 364 365 366 367 368
  if (inputs.size() != feeds_.size()) {
    LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get "
               << inputs.size();
    return false;
  }

  // Cache the inputs memory for better concurrency performance.
  feed_tensors_.resize(inputs.size());

  for (size_t i = 0; i < inputs.size(); ++i) {
369 370
    framework::LoDTensor *input = &feed_tensors_[i];
    if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) {
371 372 373
      return false;
    }
    int idx = -1;
374
    if (config_.specify_input_name_) {
T
tensor-tang 已提交
375 376
      auto name = inputs[i].name;
      if (feed_names_.find(name) == feed_names_.end()) {
T
tensor-tang 已提交
377 378
        LOG(ERROR) << "feed names from program do not have name: [" << name
                   << "] from specified input";
T
tensor-tang 已提交
379 380
      }
      idx = feed_names_[name];
381
    } else {
382
      idx = BOOST_GET_CONST(int, feeds_[i]->GetAttr("col"));
383
    }
384
    framework::SetFeedVariable(scope, *input, "feed", idx);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
  }
  return true;
}

template <typename T>
void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                    PaddleTensor *output) {
  // set shape.
  auto shape = framework::vectorize(fetch.dims());
  output->shape.assign(shape.begin(), shape.end());
  // set data.
  const T *data = fetch.data<T>();
  int num_elems = inference::VecReduceToInt(shape);
  output->data.Resize(num_elems * sizeof(T));
  // The fetched tensor output by fetch op, should always in CPU memory, so just
  // copy.
  memcpy(output->data.data(), data, num_elems * sizeof(T));
  // set lod
  output->lod.clear();
  for (auto &level : fetch.lod()) {
    output->lod.emplace_back(level.begin(), level.end());
  }
}

bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                 framework::Scope *scope) {
M
minqiyang 已提交
411
  VLOG(3) << "Predictor::get_fetch";
Y
Yan Chunwei 已提交
412 413
  outputs->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
414
    int idx = BOOST_GET_CONST(int, fetches_[i]->GetAttr("col"));
415 416 417 418 419
    PADDLE_ENFORCE_EQ(
        static_cast<size_t>(idx), i,
        platform::errors::InvalidArgument(
            "Fetch op's col attr(%d) should be equal to the index(%d)", idx,
            i));
420
    framework::FetchType &fetch_var =
421
        framework::GetFetchVariable(*scope, "fetch", idx);
422
    auto &fetch = BOOST_GET(framework::LoDTensor, fetch_var);
423 424
    auto type = fetch.type();
    auto output = &(outputs->at(i));
Y
Yan Chunwei 已提交
425
    output->name = fetches_[idx]->Input("X")[0];
Y
Yu Yang 已提交
426
    if (type == framework::proto::VarType::FP32) {
427 428
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
Y
Yu Yang 已提交
429
    } else if (type == framework::proto::VarType::INT64) {
430 431
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
432 433 434
    } else if (type == framework::proto::VarType::INT32) {
      GetFetchOne<int32_t>(fetch, output);
      output->dtype = PaddleDType::INT32;
435
    } else {
436
      LOG(ERROR) << "unknown type, only support float32, int64 and int32 now.";
437 438
    }
  }
Y
Yan Chunwei 已提交
439 440
  return true;
}
441

442
void AnalysisPredictor::PrepareArgument() {
443
  argument_.SetUseGPU(config_.use_gpu());
444
  argument_.SetUseFcPadding(config_.use_fc_padding());
445
  argument_.SetGPUDeviceId(config_.gpu_device_id());
446
  argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_);
Y
Yan Chunwei 已提交
447
  argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
T
Tao Luo 已提交
448
  argument_.SetModelFromMemory(config_.model_from_memory_);
Y
Yan Chunwei 已提交
449
  // Analyze inference_program
450
  argument_.SetPredictorID(predictor_id_);
451
  argument_.SetOptimCacheDir(config_.opt_cache_dir_);
452 453
  if (!config_.model_dir().empty()) {
    argument_.SetModelDir(config_.model_dir());
T
Tao Luo 已提交
454
  } else {
455 456 457 458 459 460
    PADDLE_ENFORCE_EQ(config_.params_file().empty(), false,
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or param_file should be set."));
    PADDLE_ENFORCE_EQ(config_.prog_file().empty(), false,
                      platform::errors::PreconditionNotMet(
                          "Either model_dir or prog_file should be set."));
N
nhzlx 已提交
461
    std::string dir = inference::analysis::GetDirRoot(config_.prog_file());
N
nhzlx 已提交
462

463 464
    argument_.SetModelProgramPath(config_.prog_file());
    argument_.SetModelParamsPath(config_.params_file());
Y
Yan Chunwei 已提交
465
  }
466

467
  if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
Y
Yan Chunwei 已提交
468
    LOG(INFO) << "TensorRT subgraph engine is enabled";
469 470 471
    argument_.SetUseTensorRT(true);
    argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
    argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
472
    argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_);
N
nhzlx 已提交
473
    argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_);
N
nhzlx 已提交
474
    argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_);
475
    argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_);
476
    argument_.SetTensorRtUseOSS(config_.trt_use_oss_);
477 478 479
    argument_.SetMinInputShape(config_.min_input_shape_);
    argument_.SetMaxInputShape(config_.max_input_shape_);
    argument_.SetOptimInputShape(config_.optim_input_shape_);
480
    argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_);
W
Wojciech Uss 已提交
481
  }
482

石晓伟 已提交
483
  if (config_.lite_engine_enabled()) {
W
Wilber 已提交
484 485
    argument_.SetCpuMathLibraryNumThreads(
        config_.cpu_math_library_num_threads());
石晓伟 已提交
486 487 488
    argument_.SetLitePrecisionMode(config_.lite_precision_mode_);
    argument_.SetLitePassesFilter(config_.lite_passes_filter_);
    argument_.SetLiteOpsFilter(config_.lite_ops_filter_);
489 490 491
    argument_.SetLiteZeroCopy(config_.lite_zero_copy_);
    argument_.SetUseXpu(config_.use_xpu_);
    argument_.SetXpuL3WorkspaceSize(config_.xpu_l3_workspace_size_);
石晓伟 已提交
492 493 494
    LOG(INFO) << "Lite subgraph engine is enabled";
  }

495
  if (config_.use_mkldnn_) {
Y
Yan Chunwei 已提交
496
    LOG(INFO) << "MKLDNN is enabled";
497 498 499
    argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_);
  }

500 501 502 503 504 505 506 507
#ifdef PADDLE_WITH_MKLDNN
  if (config_.mkldnn_quantizer_enabled()) {
    LOG(INFO) << "Quantization is enabled";
    argument_.SetQuantizeEnabledOpTypes(
        config_.mkldnn_quantizer_config()->enabled_op_types());
    argument_.SetQuantizeExcludedOpIds(
        config_.mkldnn_quantizer_config()->excluded_op_ids());
  }
508 509 510 511
  if (config_.use_mkldnn_bfloat16_) {
    LOG(INFO) << "Bfloat16 is enabled";
    argument_.SetBfloat16EnabledOpTypes(config_.bfloat16_enabled_op_types_);
  }
512 513
#endif

514
  auto passes = config_.pass_builder()->AllPasses();
Y
Yan Chunwei 已提交
515 516 517 518
  if (!config_.ir_optim()) {
    passes.clear();
    LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
  }
519
  argument_.SetDisableLogs(config_.glog_info_disabled());
520
  argument_.SetIrAnalysisPasses(passes);
Y
Yan Chunwei 已提交
521
  argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses());
522
  argument_.SetScopeNotOwned(scope_.get());
523 524 525 526 527
}

// NOTE All the members in AnalysisConfig should be copied to Argument.
void AnalysisPredictor::OptimizeInferenceProgram() {
  PrepareArgument();
528 529
  Analyzer().Run(&argument_);

530 531 532
  PADDLE_ENFORCE_EQ(
      argument_.scope_valid(), true,
      platform::errors::InvalidArgument("The argument scope should be valid."));
533 534
  VLOG(5) << "to prepare executor";
  ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program);
Y
Yan Chunwei 已提交
535
  inference_program_.reset(
536
      new framework::ProgramDesc(argument_.ir_analyzed_program()));
537 538 539 540
  // The config and argument take a lot of storage,
  // when the predictor settings are complete, we release these stores.
  argument_.PartiallyRelease();
  config_.PartiallyRelease();
541
  LOG(INFO) << "======= optimize end =======";
Y
Yan Chunwei 已提交
542
}
543 544

template <>
545 546
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
W
Wilber 已提交
547 548
  // TODO(NHZlX): Should add the link to the doc of
  // paddle_infer::CreatePredictor<paddle_infer::Config>
P
Pei Yang 已提交
549 550 551 552
  if (config.glog_info_disabled()) {
    FLAGS_logtostderr = 1;
    FLAGS_minloglevel = 2;  // GLOG_ERROR
  }
M
minqiyang 已提交
553
  VLOG(3) << "create AnalysisConfig";
554 555 556 557
  PADDLE_ENFORCE_EQ(
      config.is_valid(), true,
      platform::errors::InvalidArgument(
          "Note: Each config can only be used for one predictor."));
558

559
  if (config.use_gpu()) {
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
    static std::once_flag gflags_initialized;
    static bool process_level_allocator_enabled;

    std::call_once(gflags_initialized, [&]() {
      std::vector<std::string> gflags;
      PADDLE_ENFORCE_GE(
          config.memory_pool_init_size_mb(), 0.f,
          platform::errors::InvalidArgument(
              "The size of memory pool should be greater than 0."));
      PADDLE_ENFORCE_GE(
          config.gpu_device_id(), 0,
          platform::errors::InvalidArgument(
              "Invalid device id (%d). The device id should be greater than 0.",
              config.gpu_device_id()));
      gflags.push_back("dummy");

      float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
      if (fraction_of_gpu_memory > 0.95f) {
        LOG(ERROR)
            << "Allocate too much memory for the GPU memory pool, assigned "
            << config.memory_pool_init_size_mb() << " MB";
        LOG(ERROR) << "Try to shink the value by setting "
                      "AnalysisConfig::EnableGpu(...)";
      }
584

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
      if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
        std::string flag = "--fraction_of_gpu_memory_to_use=" +
                           std::to_string(fraction_of_gpu_memory);
        VLOG(3) << "set flag: " << flag;
        gflags.push_back(flag);
        gflags.push_back("--cudnn_deterministic=True");
      }

      if (config.thread_local_stream_enabled()) {
        gflags.push_back("--allocator_strategy=thread_local");
        process_level_allocator_enabled = false;
      } else {
        process_level_allocator_enabled = true;
      }

      if (framework::InitGflags(gflags)) {
        VLOG(3) << "The following gpu analysis configurations only take effect "
                   "for the first predictor: ";
        for (size_t i = 1; i < gflags.size(); ++i) {
          VLOG(3) << gflags[i];
        }
      } else {
        LOG(WARNING) << "The one-time configuration of analysis predictor "
                        "failed, which may be due to native predictor called "
                        "first and its configurations taken effect.";
      }
    });

    if (config.thread_local_stream_enabled() &&
        process_level_allocator_enabled) {
615 616 617 618 619 620
      PADDLE_THROW(platform::errors::Fatal(
          "When binding threads and streams, the use of "
          "process-level allocators will result in undefined result "
          "errors due to memory asynchronous operations."
          "The thread and stream binding configuration of all "
          "predictors should be the same in a single process."));
621 622 623 624
    }
  }

  std::unique_ptr<PaddlePredictor> predictor(new AnalysisPredictor(config));
625 626
  // Each config can only be used for one predictor.
  config.SetInValid();
627 628 629 630 631 632 633
  auto predictor_p = dynamic_cast<AnalysisPredictor *>(predictor.get());

  if (!predictor_p->Init(nullptr)) {
    return nullptr;
  }

  if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) {
634 635
    return nullptr;
  }
636

G
Gabor Buella 已提交
637
  return predictor;
638 639
}

640 641 642 643 644 645 646 647 648 649 650 651
bool AnalysisPredictor::MkldnnQuantize() {
#if PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_)
    mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer(
        *this, config_.mkldnn_quantizer_config());
  return mkldnn_quantizer_->Quantize();
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  return false;
#endif
}

652
void AnalysisPredictor::PrepareFeedFetch() {
653 654 655
  PADDLE_ENFORCE_NOT_NULL(sub_scope_,
                          platform::errors::InvalidArgument(
                              "The sub_scope should not be nullptr."));
656
  CreateFeedFetchVar(sub_scope_);
657 658
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
659
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
660 661 662 663 664
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
N
nhzlx 已提交
665
      idx2feeds_[idx] = op->Output("Out")[0];
666
    } else if (op->Type() == "fetch") {
667
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
Y
Yan Chunwei 已提交
668 669
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
670
      }
Y
Yan Chunwei 已提交
671
      fetches_[idx] = op;
N
nhzlx 已提交
672
      idx2fetches_[idx] = op->Input("X")[0];
673 674 675 676
    }
  }
}

677
void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) {
678 679
  PADDLE_ENFORCE_NOT_NULL(scope, platform::errors::InvalidArgument(
                                     "The scope should not be nullptr."));
680
  auto *var = scope->Var("feed");
681
  var->GetMutable<framework::FeedList>();
682
  var = scope->Var("fetch");
683
  var->GetMutable<framework::FetchList>();
684 685
}

N
nhzlx 已提交
686 687 688 689 690 691 692 693
std::vector<std::string> AnalysisPredictor::GetInputNames() {
  std::vector<std::string> input_names;
  for (auto &item : idx2feeds_) {
    input_names.push_back(item.second);
  }
  return input_names;
}

694 695 696 697 698 699
std::map<std::string, std::vector<int64_t>>
AnalysisPredictor::GetInputTensorShape() {
  std::map<std::string, std::vector<int64_t>> input_shapes;
  std::vector<std::string> names = GetInputNames();
  for (std::string name : names) {
    auto *var = inference_program_->Block(0).FindVar(name);
700 701
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::PreconditionNotMet(
                                     "Input %s does not exist.", name));
702 703 704 705 706
    input_shapes[name] = var->GetShape();
  }
  return input_shapes;
}

N
nhzlx 已提交
707 708 709 710 711 712 713 714
std::vector<std::string> AnalysisPredictor::GetOutputNames() {
  std::vector<std::string> output_names;
  for (auto &item : idx2fetches_) {
    output_names.push_back(item.second);
  }
  return output_names;
}

715 716
std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetInputTensor(
    const std::string &name) {
717 718 719 720 721
  PADDLE_ENFORCE_NOT_NULL(
      executor_->scope()->FindVar(name),
      platform::errors::PreconditionNotMet(
          "The variable named %s is not found in the scope of the exector.",
          name));
722 723 724 725
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = true;
  res->SetName(name);
N
nhzlx 已提交
726 727 728
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
729
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
730 731 732
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }

733 734 735 736 737
  return res;
}

std::unique_ptr<ZeroCopyTensor> AnalysisPredictor::GetOutputTensor(
    const std::string &name) {
738 739 740 741 742
  PADDLE_ENFORCE_NOT_NULL(
      executor_->scope()->FindVar(name),
      platform::errors::PreconditionNotMet(
          "he variable named %s is not found in the scope of the exector.",
          name));
743 744 745 746
  std::unique_ptr<ZeroCopyTensor> res(
      new ZeroCopyTensor(static_cast<void *>(executor_->scope())));
  res->input_or_output_ = false;
  res->SetName(name);
N
nhzlx 已提交
747 748 749
  if (platform::is_cpu_place(place_)) {
    res->SetPlace(PaddlePlace::kCPU);
  } else {
750
    auto gpu_place = BOOST_GET_CONST(platform::CUDAPlace, place_);
N
nhzlx 已提交
751 752
    res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId());
  }
753 754 755 756
  return res;
}

bool AnalysisPredictor::ZeroCopyRun() {
757
  paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads());
W
Wilber 已提交
758 759 760 761 762 763 764 765 766 767 768 769
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) {
    std::vector<std::vector<int>> shape_vector;
    auto names = GetInputNames();
    for (size_t i = 0; i < names.size(); ++i) {
      auto in_tensor = GetInputTensor(names[i]);
      shape_vector.emplace_back(in_tensor->shape());
    }
    MkldnnPreSet(shape_vector);
  }
#endif

770
  executor_->Run();
Y
Yan Chunwei 已提交
771
  // Fix TensorArray reuse not cleaned bug.
Y
Yan Chunwei 已提交
772
  tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_);
Y
Yan Chunwei 已提交
773
  tensor_array_batch_cleaner_.ResetTensorArray();
774 775 776 777

  // recover the cpu_math_library_num_threads to 1, in order to avoid thread
  // conflict when integrating it into deployment service.
  paddle::platform::SetNumThreads(1);
W
Wilber 已提交
778 779 780
#ifdef PADDLE_WITH_MKLDNN
  if (config_.use_mkldnn_) MkldnnPostReset();
#endif
781
#if defined(PADDLE_WITH_MKLML)
T
Tao Luo 已提交
782 783 784 785 786
  // Frees unused memory allocated by the Intel® MKL Memory Allocator to
  // avoid memory leak. See:
  // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers
  platform::dynload::MKL_Free_Buffers();
#endif
787 788 789 790 791
  return true;
}

bool AnalysisPredictor::LoadProgramDesc() {
  // Initialize the inference program
792
  std::string filename;
793 794 795
  if (!config_.model_dir().empty()) {
    filename = config_.model_dir() + "/__model__";
  } else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
796 797 798
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
799
    filename = config_.prog_file();
800
  } else {
801
    if (config_.model_dir().empty() && config_.prog_file().empty()) {
802 803 804 805
      LOG(ERROR)
          << "Either model_dir or (prog_file, param_file) should be set.";
      return false;
    }
806
    LOG(ERROR) << string::Sprintf(
807 808
        "not valid model path '%s' or program path '%s'.", config_.model_dir(),
        config_.params_file());
809 810
    return false;
  }
811 812 813

  // Create ProgramDesc
  framework::proto::ProgramDesc proto;
T
Tao Luo 已提交
814
  if (!config_.model_from_memory()) {
T
Tao Luo 已提交
815 816 817
    std::string pb_content;
    // Read binary
    std::ifstream fin(filename, std::ios::in | std::ios::binary);
818 819 820 821 822
    PADDLE_ENFORCE_EQ(
        static_cast<bool>(fin.is_open()), true,
        platform::errors::NotFound(
            "Cannot open file %s, please confirm whether the file is normal.",
            filename));
T
Tao Luo 已提交
823 824 825 826 827 828 829 830
    fin.seekg(0, std::ios::end);
    pb_content.resize(fin.tellg());
    fin.seekg(0, std::ios::beg);
    fin.read(&(pb_content.at(0)), pb_content.size());
    fin.close();

    proto.ParseFromString(pb_content);
  } else {
831
    proto.ParseFromString(config_.prog_file());
T
Tao Luo 已提交
832
  }
833 834 835 836 837 838
  inference_program_.reset(new framework::ProgramDesc(proto));
  return true;
}

bool AnalysisPredictor::LoadParameters() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
839 840
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
T
Tao Luo 已提交
841

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
  const auto &global_block = inference_program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();

      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

862
      if (!config_.params_file().empty()) {
863 864 865 866 867 868
        params.push_back(new_var->Name());
      } else {
        // append_op
        framework::OpDesc *op = load_block->AppendOp();
        op->SetType("load");
        op->SetOutput("Out", {new_var->Name()});
869
        op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
870 871 872 873 874
        op->CheckAttrs();
      }
    }
  }

875
  if (!config_.params_file().empty()) {
876 877 878 879 880 881
    // sort paramlist to have consistent ordering
    std::sort(params.begin(), params.end());
    // append just the load_combine op
    framework::OpDesc *op = load_block->AppendOp();
    op->SetType("load_combine");
    op->SetOutput("Out", params);
882
    op->SetAttr("file_path", {config_.params_file()});
883 884 885 886
    op->CheckAttrs();
  }

  // Use NaiveExecutor to Load parameters.
S
superjomn 已提交
887
  framework::NaiveExecutor e(place_);
888 889 890 891
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";

892 893
  return true;
}
894

895 896 897 898 899
uint64_t AnalysisPredictor::TryShrinkMemory() {
  ClearIntermediateTensor();
  return paddle::memory::Release(place_);
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
void AnalysisPredictor::ClearIntermediateTensor() {
  PADDLE_ENFORCE_NOT_NULL(inference_program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The inference program should be loaded first."));
  const auto &global_block = inference_program_->MutableBlock(0);
  for (auto *var : global_block->AllVars()) {
    if (!IsPersistable(var)) {
      const std::string name = var->Name();
      auto *variable = executor_->scope()->FindVar(name);
      if (variable != nullptr && variable->IsType<framework::LoDTensor>() &&
          name != "feed" && name != "fetch") {
        VLOG(3) << "Clear Intermediate Tensor: " << name;
        auto *t = variable->GetMutable<framework::LoDTensor>();
        t->clear();
      }
    }
  }
}

N
nhzlx 已提交
919
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
920
bool AnalysisPredictor::SaveTrtCalibToDisk() {
921 922 923
  PADDLE_ENFORCE_EQ(config_.tensorrt_engine_enabled(), true,
                    platform::errors::PreconditionNotMet(
                        "This func can be invoked only in trt mode"));
N
nhzlx 已提交
924 925 926 927
  auto &block = inference_program_->Block(0);
  for (auto &op_desc : block.AllOps()) {
    if (op_desc->Type() == "tensorrt_engine") {
      std::string engine_name =
928
          BOOST_GET_CONST(std::string, op_desc->GetAttr("engine_key"));
N
nhzlx 已提交
929
      if (!Singleton<TRTCalibratorEngineManager>::Global().Has(engine_name)) {
N
nhzlx 已提交
930 931 932 933
        LOG(ERROR) << "You should run the predictor(with trt) on the real data "
                      "to generate calibration info";
        return false;
      }
N
nhzlx 已提交
934 935
      TRTCalibratorEngine *calib_engine =
          Singleton<TRTCalibratorEngineManager>::Global().Get(engine_name);
N
nhzlx 已提交
936
      LOG(INFO) << "Wait for calib threads done.";
N
nhzlx 已提交
937
      calib_engine->calib_->waitAndSetDone();
N
nhzlx 已提交
938 939
      LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot "
                   "of time...";
N
nhzlx 已提交
940 941 942
      calib_engine->thr_->join();
      std::string calibration_table_data =
          calib_engine->calib_->getCalibrationTableAsString();
N
nhzlx 已提交
943

N
nhzlx 已提交
944
      if (calibration_table_data.empty()) {
N
nhzlx 已提交
945 946 947
        LOG(ERROR) << "the calibration table is empty.";
        return false;
      }
N
nhzlx 已提交
948

N
nhzlx 已提交
949 950 951 952 953
      std::string model_opt_cache_dir =
          argument_.Has("model_dir")
              ? argument_.model_dir()
              : inference::analysis::GetDirRoot(argument_.model_program_path());

N
nhzlx 已提交
954
      std::string calibration_table_data_path =
N
nhzlx 已提交
955 956 957 958
          inference::analysis::GetTrtCalibPath(
              inference::analysis::GetOrCreateModelOptCacheDir(
                  model_opt_cache_dir),
              engine_name);
N
nhzlx 已提交
959 960 961 962 963

      std::ofstream ofile(calibration_table_data_path, std::ios::out);
      LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file "
                << calibration_table_data_path;
      ofile << calibration_table_data;
N
nhzlx 已提交
964 965 966 967
      ofile.close();
    }
  }
  // Free all calibrator resources.
N
nhzlx 已提交
968
  Singleton<TRTCalibratorEngineManager>::Global().DeleteALL();
N
nhzlx 已提交
969 970
  return true;
}
N
nhzlx 已提交
971
#endif
N
nhzlx 已提交
972

973
AnalysisPredictor::~AnalysisPredictor() {
N
nhzlx 已提交
974
#if PADDLE_WITH_TENSORRT
N
nhzlx 已提交
975
  if (config_.tensorrt_engine_enabled() &&
N
nhzlx 已提交
976 977
      config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
      Singleton<TRTCalibratorEngineManager>::Global().Has()) {
N
nhzlx 已提交
978 979
    SaveTrtCalibToDisk();
  }
N
nhzlx 已提交
980
#endif
981
  if (config_.with_profile_) {
982 983 984 985 986 987
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
Y
Yan Chunwei 已提交
988

989 990 991 992 993 994
#if PADDLE_WITH_MKLDNN
  if (mkldnn_quantizer_) {
    delete mkldnn_quantizer_;
    mkldnn_quantizer_ = nullptr;
  }
#endif
995 996

  memory::Release(place_);
997 998
}

999
std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone() {
Y
Yan Chunwei 已提交
1000
  std::lock_guard<std::mutex> lk(clone_mutex_);
1001 1002 1003 1004 1005
  auto *x = new AnalysisPredictor(config_);
  x->Init(scope_, inference_program_);
  return std::unique_ptr<PaddlePredictor>(x);
}

1006
std::string AnalysisPredictor::GetSerializedProgram() const {
Y
Yan Chunwei 已提交
1007 1008 1009
  return inference_program_->Proto()->SerializeAsString();
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
// Add SaveOptimModel
void AnalysisPredictor::SaveOptimModel(const std::string &dir) {
  // save model
  std::string model_name = dir + "/model";
  std::ofstream outfile;
  outfile.open(model_name, std::ios::out | std::ios::binary);
  std::string inference_prog_desc = GetSerializedProgram();
  outfile << inference_prog_desc;
  // save params
  framework::ProgramDesc save_program;
  auto *save_block = save_program.MutableBlock(0);

  const framework::ProgramDesc &main_program = program();
  const framework::BlockDesc &global_block = main_program.Block(0);
  std::vector<std::string> save_var_list;
  for (framework::VarDesc *var : global_block.AllVars()) {
    if (IsPersistable(var)) {
      framework::VarDesc *new_var = save_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);

      save_var_list.push_back(new_var->Name());
    }
  }
  std::sort(save_var_list.begin(), save_var_list.end());
  auto *op = save_block->AppendOp();
  op->SetType("save_combine");
  op->SetInput("X", save_var_list);
  op->SetAttr("file_path", dir + "/params");
  op->CheckAttrs();

  platform::CPUPlace place;
  framework::Executor exe(place);
  exe.Run(save_program, scope(), 0, true, true);
}

Y
Yan Chunwei 已提交
1049
template <>
1050 1051
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<AnalysisConfig>(
    const AnalysisConfig &config) {
W
Wilber 已提交
1052
  LOG(WARNING) << "Deprecated. Please use CreatePredictor instead.";
1053 1054
  return CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
      config);
Y
Yan Chunwei 已提交
1055 1056
}

1057
}  // namespace paddle
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

#if PADDLE_WITH_TENSORRT
USE_TRT_CONVERTER(elementwise_add_weight);
USE_TRT_CONVERTER(elementwise_add_tensor);
USE_TRT_CONVERTER(elementwise_sub_tensor);
USE_TRT_CONVERTER(elementwise_div_tensor);
USE_TRT_CONVERTER(elementwise_mul_tensor);
USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER(elementwise_min_tensor);
USE_TRT_CONVERTER(elementwise_pow_tensor);
1068
USE_TRT_CONVERTER(matmul);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(sigmoid);
USE_TRT_CONVERTER(tanh);
USE_TRT_CONVERTER(fc);
USE_TRT_CONVERTER(pool2d);
USE_TRT_CONVERTER(softmax);
USE_TRT_CONVERTER(batch_norm);
USE_TRT_CONVERTER(concat);
USE_TRT_CONVERTER(dropout);
USE_TRT_CONVERTER(pad);
1080 1081
USE_TRT_CONVERTER(hard_sigmoid);
USE_TRT_CONVERTER(hard_swish);
1082
USE_TRT_CONVERTER(split);
1083 1084
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
H
hjchen2 已提交
1085
USE_TRT_CONVERTER(leaky_relu);
1086 1087
USE_TRT_CONVERTER(shuffle_channel);
USE_TRT_CONVERTER(swish);
1088
USE_TRT_CONVERTER(instance_norm);
P
Pei Yang 已提交
1089 1090 1091
USE_TRT_CONVERTER(layer_norm);
USE_TRT_CONVERTER(gelu);
USE_TRT_CONVERTER(multihead_matmul);
1092 1093
USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm);
USE_TRT_CONVERTER(skip_layernorm);
1094
USE_TRT_CONVERTER(slice);
1095
USE_TRT_CONVERTER(scale);
1096
USE_TRT_CONVERTER(stack);
1097
#endif
W
Wilber 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

namespace paddle_infer {

void Tensor::Reshape(const std::vector<int> &shape) { tensor_->Reshape(shape); }

std::vector<int> Tensor::shape() const { return tensor_->shape(); }

void Tensor::SetLoD(const std::vector<std::vector<size_t>> &x) {
  return tensor_->SetLoD(x);
}

std::vector<std::vector<size_t>> Tensor::lod() const { return tensor_->lod(); }

const std::string &Tensor::name() const { return tensor_->name(); }

DataType Tensor::type() const { return tensor_->type(); }

Predictor::Predictor(const Config &config) {
  const_cast<Config *>(&config)->SwitchUseFeedFetchOps(false);
  // The second parameter indicates that the discard log is not printed
  predictor_ = paddle::CreatePaddlePredictor<
      Config, paddle::PaddleEngineKind::kAnalysis>(config);
}

std::vector<std::string> Predictor::GetInputNames() {
  return predictor_->GetInputNames();
}

std::unique_ptr<Tensor> Predictor::GetInputHandle(const std::string &name) {
  auto zero_copy_tensor = predictor_->GetInputTensor(name);
  std::unique_ptr<Tensor> tensor(new Tensor(std::move(zero_copy_tensor)));
  return tensor;
}

std::vector<std::string> Predictor::GetOutputNames() {
  return predictor_->GetOutputNames();
}

std::unique_ptr<Tensor> Predictor::GetOutputHandle(const std::string &name) {
  auto zero_copy_tensor = predictor_->GetOutputTensor(name);
  std::unique_ptr<Tensor> tensor(new Tensor(std::move(zero_copy_tensor)));
  return tensor;
}

bool Predictor::Run() { return predictor_->ZeroCopyRun(); }

std::unique_ptr<Predictor> Predictor::Clone() {
  auto analysis_pred = predictor_->Clone();
  std::unique_ptr<Predictor> pred(new Predictor(std::move(analysis_pred)));
  return pred;
}

void Predictor::ClearIntermediateTensor() {
  predictor_->ClearIntermediateTensor();
}

1154 1155
uint64_t Predictor::TryShrinkMemory() { return predictor_->TryShrinkMemory(); }

W
Wilber 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
int GetNumBytesOfDataType(DataType dtype) {
  switch (dtype) {
    case DataType::FLOAT32:
      return sizeof(float);
    case DataType::INT64:
      return sizeof(int64_t);
    case DataType::INT32:
      return sizeof(int32_t);
    case DataType::UINT8:
      return sizeof(uint8_t);
    default:
      assert(false);
      return -1;
  }
}

std::string GetVersion() { return paddle::get_version(); }

std::string UpdateDllFlag(const char *name, const char *value) {
  return paddle::UpdateDllFlag(name, value);
}

}  // namespace paddle_infer

namespace paddle_infer {
std::shared_ptr<Predictor> CreatePredictor(const Config &config) {  // NOLINT
  std::shared_ptr<Predictor> predictor(new Predictor(config));
  return predictor;
}

namespace services {
PredictorPool::PredictorPool(const Config &config, size_t size) {
  PADDLE_ENFORCE_GE(
      size, 1UL,
      paddle::platform::errors::InvalidArgument(
          "The predictor pool size should be greater than 1, but it's (%d)",
          size));
  Config copy_config(config);
  main_pred_.reset(new Predictor(config));
  for (size_t i = 0; i < size - 1; i++) {
    if (config.tensorrt_engine_enabled()) {
      Config config_tmp(copy_config);
      preds_.push_back(
          std::move(std::unique_ptr<Predictor>(new Predictor(config_tmp))));
    } else {
      preds_.push_back(std::move(main_pred_->Clone()));
    }
  }
}

Predictor *PredictorPool::Retrive(size_t idx) {
  PADDLE_ENFORCE_LT(
      idx, preds_.size() + 1,
      paddle::platform::errors::InvalidArgument(
          "There are (%d) predictors in the pool, but the idx is (%d)", idx,
          preds_.size() + 1));
  if (idx == 0) {
    return main_pred_.get();
  }
  return preds_[idx - 1].get();
}
}  // namespace services
}  // namespace paddle_infer