pybind.cc 39.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

P
peizhilin 已提交
24 25 26 27 28 29 30
#if defined(_WIN32)
#define NOMINMAX
#define GLOG_NO_ABBREVIATED_SEVERITIES  // msvc conflict logging with windows.h
#define GOOGLE_GLOG_DLL_DECL
#include <Windows.h>
#endif

Y
Yi Wang 已提交
31 32 33
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
34
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
35 36 37
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
38
#include "paddle/fluid/framework/op_registry.h"
P
peizhilin 已提交
39
#ifndef _WIN32
Y
Yu Yang 已提交
40
#include "paddle/fluid/framework/parallel_executor.h"
P
peizhilin 已提交
41
#endif
Y
Yi Wang 已提交
42
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
45
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
46
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
47
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yi Wang 已提交
49
#include "paddle/fluid/platform/enforce.h"
50
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
51 52 53 54
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
55 56
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
57
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
58
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
59

60
#include "paddle/fluid/string/to_string.h"
61

D
Dong Zhihong 已提交
62
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
63
#ifndef _WIN32
Y
Yi Wang 已提交
64
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
65
#endif
Y
Yi Wang 已提交
66 67
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
68 69
#endif

M
minqiyang 已提交
70 71
#include "pybind11/stl.h"

72 73 74 75
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
76 77 78
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

79
namespace paddle {
80
namespace pybind {
81
bool IsCompiledWithCUDA() {
82
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
83 84 85 86 87 88
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
89
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
90
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
91 92 93 94 95 96
  return true;
#else
  return false;
#endif
}

97
PYBIND11_PLUGIN(core) {
Y
Refine  
Yu Yang 已提交
98
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
99
  py::module m("core", "C++ core of PaddlePaddle");
100

101 102 103 104
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

105
  BindException(&m);
Y
Yu Yang 已提交
106

107 108 109
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
110
      .def("_get_dims",
111
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
112
      .def("_set_dims",
Q
qijun 已提交
113
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
114
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
115
           })
Y
yuyang18 已提交
116
      .def("_set_layout",
D
dzhwinter 已提交
117 118 119
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
120
      .def("_alloc_float",
D
dzhwinter 已提交
121
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
122
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
123
           })
Y
yuyang18 已提交
124
      .def("_alloc_float",
Y
Yu Yang 已提交
125
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
126
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
127
           })
Y
yuyang18 已提交
128
      .def("_alloc_int",
Y
Yu Yang 已提交
129
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
130
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
131
           })
Y
yuyang18 已提交
132
      .def("_alloc_int",
D
dzhwinter 已提交
133
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
134
             self.mutable_data<int>(place);
Q
qijun 已提交
135
           })
Y
yuyang18 已提交
136
      .def("_alloc_int",
C
chengduoZH 已提交
137 138 139
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
140
      .def("_alloc_float",
C
chengduoZH 已提交
141 142 143
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
144 145
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
146
      .def("set", PyCPUTensorSetFromArray<double>)
147
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
148
      .def("set", PyCPUTensorSetFromArray<bool>)
149
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
150
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
151
      .def("set", PyCPUTensorSetFromArray<int8_t>)
152
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
153 154
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
155
      .def("set", PyCUDATensorSetFromArray<double>)
156
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
157
      .def("set", PyCUDATensorSetFromArray<bool>)
158
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
159
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
160
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
161 162 163 164 165 166
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
167
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
168
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
169
#endif
170
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
171 172 173 174 175
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
176

X
Xin Pan 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
190
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
191
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
192
     columns, hence [5, 2].
X
Xin Pan 已提交
193 194 195

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
196 197
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
221 222
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
223 224 225 226 227 228 229 230 231 232 233 234 235 236
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
237
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
238 239 240 241 242
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
243
      .def("set_lod",
244
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
245
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
246
             LoD new_lod;
247 248
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
249 250
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
251
             self.set_lod(new_lod);
D
dangqingqing 已提交
252
           })
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
278
      // Set above comments of set_lod.
279 280 281 282 283 284 285 286 287 288 289 290 291
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
292 293
      });

Q
qijun 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
307 308 309 310 311 312 313 314 315
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
316
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
317
      .def("rows", [](SelectedRows &self) {
318 319 320 321 322
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
323
      });
Q
qijun 已提交
324

325
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
326 327 328

All parameter, weight, gradient are variables in Paddle.
)DOC")
329
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
330
      .def("set_int",
331 332
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
333 334 335 336 337 338 339
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
340
      .def("get_tensor",
341 342
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
343 344
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
345 346 347
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
348 349 350 351 352
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
353 354 355
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
356
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
357 358 359 360 361
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
362 363 364

#endif
#ifndef _WIN32
Y
Refine  
Yu Yang 已提交
365 366 367 368 369
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
P
peizhilin 已提交
370 371
           py::return_value_policy::reference)
#endif
Y
Yu Yang 已提交
372
      ;  // NOLINT
373

P
peizhilin 已提交
374
#if !defined(_WIN32)
Y
Refine  
Yu Yang 已提交
375
  py::class_<framework::ReaderHolder>(m, "Reader", "")
376
      .def("reset", &framework::ReaderHolder::ResetAll);
P
peizhilin 已提交
377
#endif
Y
Refine  
Yu Yang 已提交
378

S
sneaxiy 已提交
379 380 381 382
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
383 384
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
385
      .def("push",
S
sneaxiy 已提交
386
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
387
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
388
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
389
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
390
           })
S
sneaxiy 已提交
391 392 393 394
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
395

S
sneaxiy 已提交
396
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
397
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
398
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
399
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
400 401 402 403 404 405
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
406 407
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
408
              return holder->GetQueue();
S
sneaxiy 已提交
409
            },
S
sneaxiy 已提交
410
        py::return_value_policy::copy);
S
sneaxiy 已提交
411

412
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
413
      .def("var",
414
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
415
             return self.Var(name);
Y
Yu Yang 已提交
416
           },
417
           py::return_value_policy::reference)
418
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
419
      .def(py::init<>())
420
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
421
           py::return_value_policy::reference)
Y
Yu Yang 已提交
422
      .def("drop_kids", &Scope::DropKids);
423

Y
Yu Yang 已提交
424 425
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
426 427
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
428 429 430 431 432 433 434 435 436 437
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
438 439
    return ret_values;
  });
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
456
  m.def("prune", [](const ProgramDesc &origin,
457
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
458
    ProgramDesc prog_with_targets(origin);
459
    for (const auto &t : targets) {
460
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
461
    }
462
    proto::ProgramDesc pruned_desc;
463
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
464
    return new ProgramDesc(pruned_desc);
465
  });
466 467 468 469
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
470 471 472
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
473 474
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
475
  // clang-format off
Y
Yu Yang 已提交
476
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
477 478
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
479
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
480 481 482
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
483
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
484
                      -> paddle::platform::DeviceContext* {
485
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
486
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
487
#else
Q
qijun 已提交
488
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
489
#endif
C
chengduoZH 已提交
490 491 492 493 494 495 496 497 498 499 500
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
501
// clang-format on
P
peizhilin 已提交
502
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
503 504
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
505
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
506
      .def(py::init<int>())
D
dzhwinter 已提交
507
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
508

509 510 511
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
512

C
chengduoZH 已提交
513 514 515 516
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
517 518 519 520 521 522 523
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
524
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
525
             self = gpu_place;
C
chengduoZH 已提交
526 527
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
528 529
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
530
      });
Y
Yu Yang 已提交
531

Y
Yu Yang 已提交
532 533 534
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
535
                    proto::OpDesc desc;
Y
Yu Yang 已提交
536 537 538 539 540
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
541
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
542
                  })
543
      .def("run",
544
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
545 546 547
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
548
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
549 550 551 552 553
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
554 555 556 557 558 559 560
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
561 562
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
563
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
564
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
565 566 567 568
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
569

F
fengjiayi 已提交
570
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
571
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
572
      .def("close", &Executor::Close)
S
sneaxiy 已提交
573 574 575 576 577
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
578

D
dzhwinter 已提交
579
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
580
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
581 582
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
583

584
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
585
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
586 587 588 589 590 591
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
592

593
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
594
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
595

X
Xin Pan 已提交
596 597
  m.def("_is_program_version_supported", IsProgramVersionSupported);

598 599 600 601 602
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
603

Y
Yu Yang 已提交
604 605 606 607 608 609 610 611 612
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
613
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
614 615
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
632 633 634
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
635
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
636
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
637
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
638

P
peizhilin 已提交
639
#ifndef _WIN32
D
dangqingqing 已提交
640 641 642
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
643
#endif
P
peizhilin 已提交
644
#endif
Y
Yu Yang 已提交
645

P
peizhilin 已提交
646
#ifndef _WIN32
647 648 649 650
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
651
      .value("kAll", platform::ProfilerState::kAll)
652 653 654 655 656 657 658 659 660 661 662 663 664
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
665
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
666
  m.def("reset_profiler", platform::ResetProfiler);
P
peizhilin 已提交
667
#endif
Y
Yu Yang 已提交
668

669 670
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
671 672 673 674 675
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
676 677 678
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
679

X
fix  
Xin Pan 已提交
680 681
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
682 683 684 685 686 687 688 689 690 691 692 693 694 695
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

P
peizhilin 已提交
696
#ifndef _WIN32
Y
yuyang18 已提交
697
  // -- python binds for parallel executor.
Y
yuyang18 已提交
698
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
699 700 701 702
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
703 704 705 706 707 708 709 710 711 712 713
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
714 715 716

        )DOC");

Y
yuyang18 已提交
717
  exec_strategy.def(py::init())
Y
yuyang18 已提交
718 719 720 721 722
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
723 724 725 726 727 728 729 730 731 732
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
733
      .def_property(
734 735 736 737
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
738 739 740 741
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
742 743 744 745 746
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
747 748 749 750
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
751 752 753 754 755 756 757
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
758 759 760 761 762 763 764 765 766 767 768
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
769 770 771 772 773 774
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
775

Y
yuyang18 已提交
776
  exec_strategy.def_property(
Y
yuyang18 已提交
777 778 779 780 781 782 783
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
784 785
      });

C
chengduo 已提交
786 787 788 789
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
790 791 792 793 794 795 796 797 798 799 800
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
801
)DOC");
Y
yuyang18 已提交
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
818
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
819
            self.reduce_ = strategy;
C
chengduo 已提交
820 821 822 823 824 825 826
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
827 828 829 830 831
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
832
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
833
            self.gradient_scale_ = strategy;
C
chengduo 已提交
834 835 836 837 838 839
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
840 841 842 843
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
844
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
845
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
846 847 848 849
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
850 851 852
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
853
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
854
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
855 856
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
857 858 859 860 861 862
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
863
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
864 865 866 867 868 869 870 871 872
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
873
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
874 875 876
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
C
chengduo 已提交
877 878 879 880 881 882
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
883
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
884 885 886 887 888
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
889
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
890
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
891 892 893 894 895
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
896 897 898 899

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
900
                  const std::string &, Scope *, std::vector<Scope *> &,
901 902
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
903 904 905 906
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
907 908 909 910 911
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
912 913 914 915
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
916 917 918 919 920 921
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
922

923
  BindRecordIOWriter(&m);
P
peizhilin 已提交
924
#endif
925
  return m.ptr();
L
Luo Tao 已提交
926
}
927
}  // namespace pybind
928
}  // namespace paddle