nce_op.cc 8.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

W
wanghaoshuang 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

W
wanghaoshuang 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

W
wanghaoshuang 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/nce_op.h"
W
wanghaoshuang 已提交
16

Y
Yang Yang 已提交
17 18
#include <vector>

W
wanghaoshuang 已提交
19 20 21 22 23 24 25 26 27 28
namespace paddle {
namespace operators {

using framework::Tensor;

class NCEOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
W
wanghaoshuang 已提交
29
    PADDLE_ENFORCE(ctx->HasInput("Input"));
W
wanghaoshuang 已提交
30
    PADDLE_ENFORCE(ctx->HasInput("Label"));
W
wanghaoshuang 已提交
31 32
    PADDLE_ENFORCE(ctx->HasInput("Weight"));
    PADDLE_ENFORCE(ctx->HasOutput("Cost"));
W
wanghaoshuang 已提交
33 34 35
    PADDLE_ENFORCE(ctx->HasOutput("SampleLogits"));
    PADDLE_ENFORCE(ctx->HasOutput("SampleLabels"));

W
wanghaoshuang 已提交
36
    auto x_dims = ctx->GetInputDim("Input");
W
wanghaoshuang 已提交
37
    auto label_dims = ctx->GetInputDim("Label");
38
    auto w_dims = ctx->GetInputDim("Weight");
W
wanghaoshuang 已提交
39
    PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0]);
W
wanghaoshuang 已提交
40 41 42 43
    int num_true_classes = label_dims.size() == 2 ? label_dims[1] : 1;
    if (ctx->HasInput("Bias")) {
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Weight")[0],
                        ctx->GetInputDim("Bias")[0]);
W
wanghaoshuang 已提交
44
    }
W
wanghaoshuang 已提交
45 46
    auto num_neg_samples = ctx->Attrs().Get<int>("num_neg_samples");
    auto num_total_classes = ctx->Attrs().Get<int>("num_total_classes");
W
wanghaoshuang 已提交
47 48
    std::vector<int> custom_neg_classes =
        ctx->Attrs().Get<std::vector<int>>("custom_neg_classes");
W
wanghaoshuang 已提交
49
    PADDLE_ENFORCE_EQ(num_total_classes, ctx->GetInputDim("Weight")[0]);
W
wanghaoshuang 已提交
50 51
    if (custom_neg_classes.size() > 0) {
      PADDLE_ENFORCE_EQ(custom_neg_classes.size(),
W
wanghaoshuang 已提交
52
                        static_cast<size_t>(num_neg_samples));
W
wanghaoshuang 已提交
53
    }
W
wanghaoshuang 已提交
54
    // set dims of output(Out)
W
wanghaoshuang 已提交
55
    std::vector<int64_t> out_dims;
W
wanghaoshuang 已提交
56
    out_dims.push_back(x_dims[0]);
W
wanghaoshuang 已提交
57
    out_dims.push_back(1);
W
wanghaoshuang 已提交
58
    ctx->SetOutputDim("Cost", framework::make_ddim(out_dims));
W
wanghaoshuang 已提交
59 60

    // set dims of output(SampleOut)
W
wanghaoshuang 已提交
61
    std::vector<int64_t> sample_out_dims;
W
wanghaoshuang 已提交
62
    sample_out_dims.push_back(x_dims[0]);
W
wanghaoshuang 已提交
63
    sample_out_dims.push_back(num_neg_samples + num_true_classes);
W
wanghaoshuang 已提交
64 65 66
    ctx->SetOutputDim("SampleLogits", framework::make_ddim(sample_out_dims));
    ctx->SetOutputDim("SampleLabels", framework::make_ddim(sample_out_dims));
  }
W
wanghaoshuang 已提交
67 68

 protected:
69
  framework::OpKernelType GetExpectedKernelType(
W
wanghaoshuang 已提交
70 71 72
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("Input")->type()),
C
chengduo 已提交
73
        platform::CPUPlace());
W
wanghaoshuang 已提交
74
  }
W
wanghaoshuang 已提交
75 76 77 78
};

class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
79
  void Make() override {
W
wanghaoshuang 已提交
80
    AddInput("Input", "(Tensor) A tensor of shape [batch_size, dim].");
W
wanghaoshuang 已提交
81 82 83 84 85 86 87 88
    AddInput(
        "Label",
        "(Tensor) A tensor of shape [batch_size, num_true_class]. "
        "'num_true_class' is the number of target classes in each sample."
        "The number of target classes per sample should be same. "
        "If you have a variable number of target classes, "
        "you can pad them out to a constant number by either repeating them"
        " or by padding with an otherwise unused class.)");
W
wanghaoshuang 已提交
89 90 91
    AddInput("Weight",
             "(Tensor) A tensor of shape [num_class, dim]. 'num_class' is the "
             "total number of class.");
W
wanghaoshuang 已提交
92 93 94 95
    AddInput(
        "Bias",
        "(Tensor) A tensor of shape [num_class, 1]. 'num_class' is the total "
        "number of class. It is a dispensable input.")
W
wanghaoshuang 已提交
96 97
        .AsDispensable();
    AddInput("SampleWeight",
W
wanghaoshuang 已提交
98
             "(Tensor) A tensor of shape [batch_size, 1] storing a weight for "
W
wanghaoshuang 已提交
99 100 101
             "each sample. And it is a dispensable input. The default value of "
             "sample is 1.")
        .AsDispensable();
102 103 104 105 106 107 108

    AddInput(
        "CustomDistribution",
        "(Tensor) It is used in 'CostumDist' sampler. "
        "It is a tensor with shape [num_total_classes]."
        "The i-th element is the probsbility of the i-th class being sampled.")
        .AsDispensable();
W
wanghaoshuang 已提交
109
    AddOutput("Cost",
W
wanghaoshuang 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
              "(Tensor) A tensor of shape [batch_size, 1]. Cost of samples.");
    AddOutput("SampleLogits",
              "An intermediate tensor of shape[batch_size, num_neg_samples + "
              "num_pos_samples]."
              "This tensor is output of forward kernel and used in backward "
              "kernel to compute grads."
              "Given X is  the dot product of input tensor and sampled labels' "
              "weights."
              "Then 'SampleLogits' is sigmoid(X).")
        .AsIntermediate();
    AddOutput("SampleLabels",
              "An intermediate tensor of shape[batch_size, num_neg_samples + "
              "num_pos_samples]."
              "This tensor is output of forward kernel and used in backward "
              "kernel to compute grads."
              "")
        .AsIntermediate();
    AddAttr<int>("num_total_classes",
                 "Total number of classes in all samples.");
    AddAttr<int>("num_neg_samples",
                 "The number of negative classes. The default value is 10.")
W
wanghaoshuang 已提交
131
        .SetDefault(10);
132 133 134 135 136 137 138 139 140 141 142

    AddAttr<int>("sampler",
                 "(int) Which sampler to be used to sample negative class."
                 "0: Uniform; 1: LogUniform; 2: CostumDist.")
        .SetDefault(0);

    AddAttr<int>("seed",
                 "(int) The seed used in sampler. If it is 0, "
                 "the sampler will generate a seed randomly.")
        .SetDefault(0);

W
wanghaoshuang 已提交
143 144 145 146
    AddAttr<std::vector<int>>("custom_neg_classes",
                              "This attribute only be used in unitest. Classes "
                              "in this list wiil be used as negative classes "
                              "for every samples. Under normal conditions, "
Y
Yang Yu 已提交
147 148
                              "user should avoid setting this attribute.")
        .SetDefault({});
W
wanghaoshuang 已提交
149
    AddComment(R"DOC(
Y
Yibing Liu 已提交
150 151 152 153
Compute and return the noise-contrastive estimation training loss. See 
`Noise-contrastive estimation: A new estimation principle for unnormalized 
statistical models 
 <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_.
W
wanghaoshuang 已提交
154
By default this operator uses a uniform distribution for sampling.
W
wanghaoshuang 已提交
155 156 157 158 159 160 161 162 163
)DOC");
  }
};

class NCEOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
W
wanghaoshuang 已提交
164 165 166 167 168 169
    PADDLE_ENFORCE(ctx->HasInput("Input"));
    PADDLE_ENFORCE(ctx->HasInput("Weight"));
    PADDLE_ENFORCE(ctx->HasInput("Cost"));
    PADDLE_ENFORCE(ctx->HasInput("SampleLogits"));
    PADDLE_ENFORCE(ctx->HasInput("SampleLabels"));
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Cost")),
W
wanghaoshuang 已提交
170
                   "The input(Out@GRAD) should not be null.");
W
wanghaoshuang 已提交
171

W
wanghaoshuang 已提交
172 173
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
W
wanghaoshuang 已提交
174 175 176 177
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }

W
wanghaoshuang 已提交
178 179
    auto w_dims = ctx->GetInputDim("Weight");
    auto w_grad_name = framework::GradVarName("Weight");
W
wanghaoshuang 已提交
180 181 182 183
    if (ctx->HasOutput(w_grad_name)) {
      ctx->SetOutputDim(w_grad_name, w_dims);
    }

W
wanghaoshuang 已提交
184
    auto bias_grad_name = framework::GradVarName("Bias");
W
wanghaoshuang 已提交
185
    if (ctx->HasOutput(bias_grad_name)) {
W
wanghaoshuang 已提交
186
      auto bias_dims = ctx->GetInputDim("Bias");
W
wanghaoshuang 已提交
187 188 189
      ctx->SetOutputDim(bias_grad_name, bias_dims);
    }
  }
W
wanghaoshuang 已提交
190 191

 protected:
192
  framework::OpKernelType GetExpectedKernelType(
W
wanghaoshuang 已提交
193 194 195
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("Input")->type()),
C
chengduo 已提交
196
        platform::CPUPlace());
W
wanghaoshuang 已提交
197
  }
W
wanghaoshuang 已提交
198 199 200 201 202 203
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
204
REGISTER_OPERATOR(nce, ops::NCEOp, ops::NCEOpMaker,
205 206
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(nce_grad, ops::NCEOpGrad);
W
wanghaoshuang 已提交
207 208
REGISTER_OP_CPU_KERNEL(nce, ops::NCEKernel<paddle::platform::CPUPlace, float>,
                       ops::NCEKernel<paddle::platform::CPUPlace, double>);
W
wanghaoshuang 已提交
209
REGISTER_OP_CPU_KERNEL(nce_grad,
W
wanghaoshuang 已提交
210 211
                       ops::NCEGradKernel<paddle::platform::CPUPlace, float>,
                       ops::NCEGradKernel<paddle::platform::CPUPlace, double>);