elementwise_min_op.h 2.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

W
Wu Yi 已提交
17 18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
F
fengjiayi 已提交
19 20 21 22 23 24 25 26 27 28 29 30
namespace paddle {
namespace operators {

template <typename T>
struct MinFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a < b ? a : b; }
};

template <typename DeviceContext, typename T>
class ElementwiseMinKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
31 32 33
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
34 35 36

    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
37 38
    ElementwiseComputeEx<MinFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          MinFunctor<T>(), z);
F
fengjiayi 已提交
39 40 41 42
  }
};

template <typename T>
C
chengduoZH 已提交
43 44 45
struct MinGradDx {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * (x < y);
F
fengjiayi 已提交
46 47 48 49
  }
};

template <typename T>
C
chengduoZH 已提交
50 51 52
struct MinGradDy {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return dout * (x >= y);
F
fengjiayi 已提交
53 54 55 56
  }
};

template <typename DeviceContext, typename T>
57
class ElementwiseMinGradKernel : public ElemwiseGradKernel<T> {
F
fengjiayi 已提交
58 59
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
60
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
61 62 63 64 65 66 67 68 69
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
70 71
    ElemwiseGradCompute<DeviceContext, T, MinGradDx<T>, MinGradDy<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, MinGradDx<T>(), MinGradDy<T>());
F
fengjiayi 已提交
72 73 74 75
  }
};
}  // namespace operators
}  // namespace paddle